Abstract
With the rapid advancement of elastic and translucent optoelectronics, the demand for low-cost materials has emerged as a major research topic. As a result, this paper investigated how Al2O3 incorporation altered the properties of PVC. New PVC/xAl2O3 (x = 0, 0.01, 0.03, 0.07, 0.1, 0.2 wt%) nanocomposites were manufactured by using a cost-effective and simple process (casting method) to adjust the Al2O3 concentration. The PVC/xAl2O3 (x = 0, 0.01, 0.03, 0.07, 0.1, 0.2 wt%) nanocomposites were analyzed using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ultraviolet-visible (UV–visible) spectroscopy, and impedance measurements. Dislocation density (δ), Distortion parameter (g), nanoparticle size (D), and lattice strain (ε) were assessed using the Scherrer and Williamson–Hall methods. Crystal size and the number of crystallites were observed to increase with Al2O3 content, revealing the higher crystallinity in the material. It was found that the particle size was ~ 30.22 nm for PVC/xAl2O3 (x = 0.1wt%). SEM analysis showed a consistent distribution of Al2O3 within the PVC at low concentrations of Al2O3. These PVC/Al2O3 films were used as adjustable light- diffusing films in the packaging of different flexible photoelectric devices, according to their visible absorbance characteristic depending on filler concentrations. The optical bandgaps of PVC and PVC/x(Al2O3) (where x = 0.2) were 5.05 eV and 3 eV, respectively. This decrease was associated with the creation of localized states in the bandgap. The refractive index values obtained were greater than those found in earlier studies, suggesting that the incorporation of a small amount of Al2O3 nanoparticles improved the refractive index of PVC. It was noted that as the concentration of Al2O3 rose, the dispersion parameters Ed, M2, and M3 showed an increase, while E0 exhibited a decrease. Conversely, the dielectric characteristics of the synthesized nanocomposites improved as the alumina content in the PVC matrix increased. The findings concluded that inexpensive PVC/xAl2O3(x = 0.1wt%) nanocomposites can be used as an essential component in sophisticated optoelectronic applications.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Chougle, A. et al. Evolving role of conjugated polymers in nanoelectronics and photonics. Nano-Micro Lett. 17 (1), 230 (2025).
Musa, A. A. et al. Nano-enhanced polymer composite materials: a review of current advancements and challenges. Polymers 17 (7), 893 (2025).
Althobiti, R. A. et al. Enhancing the performance of PVC/PMMA polymer blend through hybrid nanofiller of TiO2 NPs/GNPs for capacitive energy storage applications. Ceram. Int. 50 (11), 19039–19047 (2024).
Zihlif, A., Faduos, A. S. & Ragosta, G. Optoelectrical properties of polymer composite: polystyrene-containing iron particles. J. Thermoplast. Compos. Mater. 26 (9), 1180–1191 (2013).
Kumar, S. et al. Fabrication of novel red light emitting PVA/ZnO: Eu3 + electrospun composite nanofibers. Results Mater. 26, 100682 (2025).
Kumar, S. et al. Stress-Induced structural phase transition in Polystyrene/NaYF4: Eu3 + Photoluminescent electrospun nanofibers. J. Nanomaterials. 2022 (1), 2173629 (2022).
Kumar, S. et al. Tunable photoluminescence of Polyvinyl alcohol electrospun nanofibers by doping of NaYF4: Eu + 3 nanophosphor. J. Nanomaterials. 2020 (1), 1023589 (2020).
Sadoh, A. et al. Optical properties of low-refractive index polymers. Mater. Sci. Eng. 6 (2), 68–76 (2022).
El Sayed, A. & Morsi, W. α-Fe2O3/(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49 (15), 5378–5387 (2014).
Al-Faleh, R. & Zihlif, A. A study on optical absorption and constants of doped Poly (ethylene oxide). Phys. B: Condens. Matter. 406 (10), 1919–1925 (2011).
Taha, T. & Saleh, A. Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl. Phys. A. 124 (9), 600 (2018).
Abdel-Baset, T., Elzayat, M. & Mahrous, S. Characterization and optical and dielectric properties of Polyvinyl chloride/silica nanocomposites films. Int. J. Polym. Sci. 2016 (1), 1707018 (2016).
Ibrahim, S., Sheha, E. & Abouelhassan, S. The effect of isothermal annealing on the AC conductivity of Polyvinyl Alcohol-based polymer as an energy storage system. J. Basic. Environ. Sci. 11 (4), 670–679 (2024).
Aziz, S. B. et al. Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder. Int. J. Met. 2013 (1), 123657 (2013).
Wilson, J. et al. Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J. Appl. Phys. 95 (3), 1439–1443 (2004).
Ebnalwaled, A. & Thabet, A. Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Met. 220, 374–383 (2016).
Kumar, S. et al. A review on polymeric photoluminiscent nanofibers: Inorganic, organic and perovskites additives for solid-state lighting application. Polym. Sci. Ser. A. 64 (5), 367–392 (2022).
Kumar, S. et al. A novel fabrication of electrospun polyacrylonitrile/NaYF 4: Eu + 3 light emitting nanofibers. RSC Adv. 10 (42), 24855–24861 (2020).
Elbasiony, A. et al. Enhancing the performance of optoelectronic potential of CuO/Al nanoplats in a PVC for medium voltage cables applications. J. Thermoplast. Compos. Mater. 38 (2), 407–434 (2025).
Alkallas, F. H. et al. Influence of Al2O3 nanoparticles on the structural, optical, and electrical properties of PVC/PS nanocomposite for use in optoelectronic devices. Surf. Interfaces. 51, 104651 (2024).
Al Naim, A. et al. Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite. J. Radiation Res. Appl. Sci. 10 (3), 165–171 (2017).
Altowairqi, Y. et al. Optical and dielectric features of PVC/ZnCo2O4/MWCNTs/TBAI polymers for optoelectronic and energy storage applications. Opt. Mater. 154, 115625 (2024).
Mallakpour, S. & Khadem, E. Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Prog. Polym. Sci. 51, 74–93 (2015).
Filatova, E. O. & Konashuk, A. S. Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. J. Phys. Chem. C. 119 (35), 20755–20761 (2015).
Alruwaili, A. et al. Tuning structural, dielectric constants, optoelectrical parameters, and linear/nonlinear optical features of PVC/ZrO2 nanocomposite films for flexible electronic devices. J. Inorg. Organomet. Polym Mater. 35 (5), 3786–3801 (2025).
Abdelhameed, D., Morsi, M. & Elsisi, M. E. Impact of CoCl2 on the structural, morphological, optical, and Magnetic Properties of PCL/PVC Blend for Advanced spintronic/optoelectronic Applications (Ceramics International, 2025).
Ghobashy, M. M. et al. Synthesis of hybrid ZnO nanohexagons and nanorods with CNT embedded in PVC film for advanced insulation and optoelectronic applications. ECS J. Solid State Sci. Technol. 14 (3), 031004 (2025).
El-naggar, A. et al. Nano architectonics and Photo/Electrical properties of PANI/TMAI reinforced PVC/ZnCo2O4/CdS composite polymer for futuristic optoelectronic and energy storage devices. J. Inorg. Organomet. Polym Mater., : pp. 1–17. (2025).
Al-Muntaser, A. et al. Linear and Nonlinear Optical Properties of Pvc/Pmma Polymer Blends Reinforced with Tio2/Gnp Hybrid Fillers for Multifunctional Optoelectronic Applications (Pmma Polymer Blends Reinforced with Tio2/Gnp Hybrid Fillers for Multifunctional Optoelectronic Applications, 2025).
Elbasiony, A. et al. Tailoring the linear and nonlinear optical properties of PVC/PE blend polymer by insertion the spindle copper nanoparticles. Opt. Mater. 148, 114811 (2024).
Mohammed, A. A. et al. Effect of graphene nanoplates and multi-walled carbon nanotubes doping on structural and optical properties of Polyvinyl chloride membranes for outdoor applications. J. Mater. Sci.: Mater. Electron. 35 (6), 440 (2024).
Mohammed, S. J. et al. Organic soluble nitrogen-doped carbon Dots (ONCDs) to reduce the optical band gap of PVC polymer: breakthrough in polymer composites with improved optical properties. Opt. Mater. 149, 115014 (2024).
Yousef, E., Ali, M. & Allam, N. K. Tuning the optical properties and hydrophobicity of BiVO4/PVC/PVP composites as potential candidates for optoelectronics applications. Opt. Mater. 150, 115193 (2024).
El-Naggar, A. et al. Structural, optical, and dielectric properties of PVC/ZnMn2O4/PbS polymers with and without MWCNTs. Opt. Quant. Electron. 56 (1), 13 (2024).
Bhavsar, S., Patel, G. B. & Singh, N. Investigation of optical properties of aluminium oxide doped polystyrene polymer nanocomposite films. Phys. B: Condens. Matter. 533, 12–16 (2018).
Mohammed, G., El, A. M., Sayed & El-Gamal, S. Effect of M nitrates on the optical, dielectric relaxation and porosity of PVC/PMMA membranes (M = Cd, Co, cr or Mg). J. Inorg. Organomet. Polym Mater. 30 (4), 1306–1319 (2020).
Abdelghany, A., Meikhail, M. & Hamdy, R. Enrichment of Poly vinyl chloride (PVC) biological uses through sodium chloride filler, density functional theory (DFT) supported experimental study. J. Adv. Phys., 13(3). (2018).
Kumar, V. et al. Study of optical, structural and chemical properties of neutron irradiated PADC film. Vacuum 86 (3), 275–279 (2011).
Jiang, X. et al. Effect of benzoic acid surface modified alumina nanoparticles on the mechanical properties and crystallization behavior of isotactic polypropylene nanocomposites. RSC Adv. 8 (37), 20790–20800 (2018).
Bhat, V. S. et al. Investigation of impact of Al2O3 nanoparticles on optical, electrical and structural properties of PFO/PMMA films for optoelectronic applications. Discover Mater. 5 (1), 68 (2025).
Jimenez, A. M. et al. Effects of hairy nanoparticles on polymer crystallization kinetics. Macromolecules 52 (23), 9186–9198 (2019).
Eftekhari, A. et al. Fabrication and microstructural characterization of the novel optical ceramic consisting of α-Al2O3@ amorphous alumina nanocomposite core/shell structure. J. Eur. Ceram. Soc. 38 (9), 3297–3304 (2018).
Khalil, R. et al. Microstructure, electrical, optical and electrochemical characteristics of silver phosphate glasses cathode for magnesium battery applications. J. Phys. D. 55 (49), 495303 (2022).
Hassan, E. S. et al. Structural and Optical Properties of Sprayed Ba Doped CdS Nanostructure Thin Films. in Journal of Physics: Conference Series. IOP Publishing. (2020).
Attallah, M. & Sheha, E. Tailoring the electrochemical performance of the polymer electrolyte using Na2H20B4O17 for magnesium sulfur battery applications. Curr. Appl. Phys. 71, 175–183 (2025).
Kumar, V. et al. Effect of gamma irradiation on the properties of plastic bottle sheet. Nucl. Instrum. Methods Phys. Res., Sect. B. 287, 10–14 (2012).
Singha, N. K. & De, P. P. Application of infrared spectroscopy to characterise chemically modified rubbers and rubbery materials. Spectrosc. Rubbers Rubbery Mater. 125. (2002).
Kaur, G., Sharma, A. & Sharma, V. Rapid and non-destructive FTIR-chemometric method for polybag analysis: distinguishing biodegradable from non-biodegradable materials. Next Res. 2 (1), 100111 (2025).
Ramesh, S. et al. FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 66 (4–5), 1237–1242 (2007).
Suvarna, S. & Ramesan, M. Structural, conductivity, mechanical and wettability properties of copper alumina reinforced chlorinated polyethylene/polyvinyl chloride blend nanocomposites. Res. Chem. Intermed., 49(5). (2023).
Pavan, C. et al. Physico-chemical approaches to investigate surface hydroxyls as determinants of molecular initiating events in oxide particle toxicity. Int. J. Mol. Sci. 24 (14), 11482 (2023).
Hart, K. D. et al. Upside-Down adsorption: the counterintuitive influences of surface entropy and surface hydroxyl density on hydrogen spillover. J. Am. Chem. Soc. 146 (44), 30091–30103 (2024).
Choudalakis, G. & Gotsis, A. Free volume and mass transport in polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 17 (3), 132–140 (2012).
Cao, L. et al. Nanocellulose-a sustainable and efficient nanofiller for rubber nanocomposites: from reinforcement to smart soft materials. Polym. Rev. 62 (3), 549–584 (2022).
Rabie, S. T. et al. Synthesis and characterization of functionalized modified PVC-chitosan as antimicrobial polymeric biomaterial. Polym. Bull. 80 (8), 8899–8918 (2023).
Khdary, N. H., Almuarqab, B. T., El, G. & Enany Nanoparticle-embedded polymers and their applications: a review. Membranes 13 (5), 537 (2023).
Gobena, S. T. & Woldeyonnes, A. D. A review of synthesis methods, and characterization techniques of polymer nanocomposites for diverse applications. Discover Mater. 4 (1), 52 (2024).
Ashraf, M. A. et al. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res. Lett. 13 (1), 214 (2018).
Deghiedy, N. & El-Sayed, S. Evaluation of the structural and optical characters of PVA/PVP blended films. Opt. Mater. 100, 109667 (2020).
Nimrodh Ananth, A. et al. On the optical and thermal properties of in situ/ex situ reduced ag NP’s/PVA composites and its role as a simple SPR-based protein sensor. Appl. Nanosci. 1 (2), 87–96 (2011).
Elashmawi, I. S. & Menazea, A. A. Different time’s nd: YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. J. Mater. Res. Technol. 8 (2), 1944–1951 (2019).
Hiremath, A. et al. Nanoparticles filled polymer nanocomposites: a technological review. Cogent Eng. 8 (1), 1991229 (2021).
Zare, Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos. Part A: Appl. Sci. Manufac. 84, 158–164 (2016).
Kumar, A. & Kumar, N. Advances in transparent polymer nanocomposites and their applications: A comprehensive review. Polymer-Plastics Technol. Mater. 61 (9), 937–974 (2022).
Al-Bataineh, Q. M. et al. A novel optical model of the experimental transmission spectra of nanocomposite PVC-PS hybrid thin films doped with silica nanoparticles. Heliyon, 6(6). (2020).
D’souza, O. J. et al. Fabrication and study of Poly (vinyl alcohol) film functionalized with Basella Alba stem extract. J. Polym. Environ. 30 (7), 2888–2904 (2022).
Narasagoudr, S. S. et al. Ethyl Vanillin incorporated chitosan/poly (vinyl alcohol) active films for food packaging applications. Carbohydr. Polym. 236, 116049 (2020).
Rajendran, S., Sivakumar, P. & Babu, R. S. Studies on the salt concentration of a PVdF–PVC based polymer blend electrolyte. J. Power Sources. 164 (2), 815–821 (2007).
Dhatarwal, P. & Sengwa, R. Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics. Phys. B: Condens. Matter. 613, 412989 (2021).
Ma, X. et al. Application of β-diketone Boron complex as an ultraviolet absorber in Polyvinyl chloride film. Mater. Res. Express. 7 (7), 076403 (2020).
Rabee, B. H., Razooqi, F. Z. & Shinen, M. Investigation of optical properties for (PVA-PEG-Ag) polymer nanocomposites films. Chem. Mater. Res. 7 (4), 103–109 (2015).
Mahdi, S. M. & Habeeb, M. A. Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biological applications. Polym. Bull. 80 (12), 12741–12760 (2023).
Alshammari, A. H. Structural, optical, and thermal properties of PVA/SrTiO3/CNT polymer nanocomposites. Polymers 16 (10), 1392 (2024).
Almaghamsi, H. Structural, optical, and morphological properties of PVC-BaTiO3 nanocomposite films. J. Mol. Liq. 412, 125826 (2024).
Abed, R. N. et al. Enhancing optical properties of modified PVC and Cr2O3 nanocomposite. Trans. Electr. Electron. Mater. 22 (3), 317–327 (2021).
Nadtochiy, A. et al. Graphene-Based Polymer Nanocomposites (Springer, 2024).
Rossi, S. Reflective Structural Colors and their Actuation Using Electroactive Conducting Polymers (Linkopings Universitet (Sweden), 2022).
Yenchalwar, S. G. Surface plasmon induced enhancement in the optical and photocurrent properties of metal-semiconductor hybrids. (2016).
Mamand, D. M. et al. Improved optical characteristics of PEO polymer integrated with graphene oxide. Sci. Rep. 15 (1), 32225 (2025).
Maliakal, A. et al. Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications. J. Am. Chem. Soc. 127 (42), 14655–14662 (2005).
Okuyama, K., Wang, W. N. & Iskandar, F. Technology innovation in the nanoparticle Project—Synthesis of nanoparticles and Nanocomposites—[Translated]. Kona Powder Part. J. 25, 237–243 (2007).
Mahmoud, A., Abdel-Rahim, M. & Mohamed, M. Role of the annealing temperature for optimizing the optical and electronic parameters of Ge10Se75Ag15 films for optoelectronic applications. Opt. Quant. Electron. 53 (5), 236 (2021).
Soliman, T. & Abouhaswa, A. Synthesis and structural of Cd0. 5Zn0. 5F2O4 nanoparticles and its influence on the structure and optical properties of Polyvinyl alcohol films. J. Mater. Sci.: Mater. Electron. 31 (12), 9666–9674 (2020).
Thabet, A., Al Mufadi, F. A. & Ebnalwaled, A. Synthesis and measurement of optical light characterization for modern cost-fewer Polyvinyl chloride nanocomposites thin films. Trans. Electr. Electron. Mater. 25 (1), 98–109 (2024).
Soliman, T. & Vshivkov, S. Effect of Fe nanoparticles on the structure and optical properties of Polyvinyl alcohol nanocomposite films. J. Non-cryst. Solids. 519, 119452 (2019).
Mohamed, M. et al. Composition dependence of structural and linear and non-linear optical properties of CdS1 – x Mn x semiconducting thin films. Appl. Phys. A. 125 (7), 483 (2019).
Ali, H. E. & Khairy, Y. Microstructure and optical properties of Ni2 + doped PVA for optoelectronic devices. Phys. B: Condens. Matter. 570, 41–47 (2019).
Abdullah, O. G. et al. Reducing the optical band gap of Polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci.: Mater. Electron. 26 (7), 5303–5309 (2015).
Mahdi, M. & Al-Ani, S. Optical characterization of chemical bath deposition Cd1-xZnxS thin films. Int. J. Nanoelectronics Mater. 5, 11–24 (2012).
Shah, N. et al. Structural, electrical, and optical properties of copper indium diselenide thin film prepared by thermal evaporation method. Thin Solid Films. 517 (13), 3639–3644 (2009).
Saini, I. et al. Tailoring of electrical, optical and structural properties of PVA by addition of ag nanoparticles. Mater. Chem. Phys. 139 (2–3), 802–810 (2013).
Abomostafa, H. & Abulyazied, D. Linear and nonlinear optical response of nickel core–shell@ silica/PMMA nanocomposite film for flexible optoelectronic applications. J. Inorg. Organomet. Polym Mater. 31 (7), 2902–2914 (2021).
Shehap, A. & Akil, D. S. Structural and optical properties of TiO 2 nanoparticles/PVA for different composites thin films. Int. J. Nanoelectronics Mater., 9(1). (2016).
Soliman, T., Vshivkov, S. & Elkalashy, S. I. Structural, linear and nonlinear optical properties of Ni nanoparticles–Polyvinyl alcohol nanocomposite films for optoelectronic applications. Opt. Mater. 107, 110037 (2020).
Alotaibi, S. et al. In-depth investigation of thickness-dependence of structural, linear, and nonlinear spectroscopic properties of Al-doped Cu (In, Ga) Se2 grown by a one-step sputtering process. Opt. Mater. 160, 116707 (2025).
Cotter, D. et al. Nonlinear optics for high-speed digital information processing. Science 286 (5444), 1523–1528 (1999).
Divya, S. et al. Evaluation of nonlinear optical parameters of TiN/PVA nanocomposite–A comparison between semi empirical relation and Z-Scan results. Curr. Appl. Phys. 14 (1), 93–98 (2014).
Alruwaili, A., Mohamed, M. & Sayed, A. M. E. Influence of Bi2O3, PbO, and Y2O3 nanofillers on the physical features of Polyvinyl chloride: materials for optoelectronics or dielectric applications. J. Mater. Sci.: Mater. Electron. 35 (23), 1581 (2024).
El-Khiyami, S. S., Ismail, A. & Hafez, R. Characterization, optical and conductivity study of nickel oxide based nanocomposites of polystyrene. J. Inorg. Organomet. Polym Mater. 31 (11), 4313–4325 (2021).
Elarasasi, T. Y. et al. Linear and Non linear optical properties of PVA-Ag/Coumarin nanocomposites (again). Egypt. J. Solids. 44 (1), 1–25 (2022).
Ahmed, M. et al. Linear and non-linear optical parameters of copper chloride doped Poly (vinyl alcohol) for optoelectronic applications. Egypt. J. Chem. 65 (9), 99–108 (2022).
Badran, H. A. et al. Study of the linear optical properties and surface energy loss of 5’, 5-dibromo-o-cresolsulfophthalein thin films. Chalcogenide Lett. 9 (12), 483–493 (2012).
El-Naggar, A. et al. Effect of PANI addition on structural, optical and electrical characteristics of PVC/Sn0. 9Fe0. 1S2 polymer. Opt. Quant. Electron. 55 (11), 998 (2023).
Suma, G. et al. Effect of Ce0. 5Zr0. 5O2 nano fillers on structural and optical behaviors of Poly (vinyl alcohol). J. Mater. Sci.: Mater. Electron. 28 (14), 10707–10714 (2017).
Taha, T. et al. Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 76 (9), 4769–4784 (2019).
Fadel, M. et al. Structural and optical properties of SeGe and SeGeX (X = In, Sb and Bi) amorphous films. J. Alloys Compd. 485 (1–2), 604–609 (2009).
Khan, S. A. et al. Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Curr. Appl. Phys. 10 (1), 145–152 (2010).
Abdel-Aziz, M. et al. Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films. Appl. Surf. Sci. 252 (23), 8163–8170 (2006).
Mortadi, H. et al. Investigation of optical, electrical and dielectric properties of pyrophosphates LixCu2-x/2 P2O7 (x = 0.0; 0.05; 0.1). J. Solid State Chem. 316, 123609 (2022).
Eissa, A. et al. Studies on AC electrical conductivity and dielectric properties of organic Acid-Doped PVA solid polymer electrolyte films. J. Basic. Environ. Sci. 12 (1), 38–59 (2025).
Samet, M., Kallel, A. & Serghei, A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: scaling laws and applications. J. Compos. Mater. 56 (20), 3197–3217 (2022).
Hanani, Z. et al. The paradigm of the filler’s dielectric permittivity and aspect ratio in high-k polymer nanocomposites for energy storage applications. J. Mater. Chem. C. 10 (30), 10823–10831 (2022).
Tan, D. Q. The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites. J. Appl. Polym. Sci. 137 (33), 49379 (2020).
You, L. et al. Energy storage performance of polymer-based dielectric composites with two-dimensional fillers. Nanomaterials 13 (21), 2842 (2023).
Zhang, X. et al. Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces. 5 (11), 1800096 (2018).
Vijayakumar, V. & Nam, S. Y. Dielectric properties of polyvinylchloride (PVC) composites and nanocomposites. Poly (Vinyl Chloride) Based Composites and Nanocomposites, 319–334. (2023).
Alwan, E. K. et al. Synthesis of Cobalt iron oxide doped by chromium using sol-gel method and application to remove malachite green dye. NeuroQuantology 19 (8), 32–41 (2021).
Wang, Q. et al. Contributing factors of dielectric properties for polymer matrix composites. Polymers 15 (3), 590 (2023).
Ray, S. S. & Okamoto, M. Polymer/layered silicate nanocomposites: a review from Preparation to processing. Prog. Polym. Sci. 28 (11), 1539–1641 (2003).
Nelson, J. & Hu, Y. Nanocomposite dielectrics—properties and implications. J. Phys. D. 38 (2), 213 (2005).
Elsad, R. et al. Evaluation of dielectric properties for PVC/SiO2 nanocomposites under the effect of water absorption. J. Mater. Sci.: Mater. Electron. 34 (9), 786 (2023).
Madani, L., Belkhir, K. S. & Belkhiat, S. Experimental study of electric and dielectric behavior of PVC composites. Eng. Technol. Appl. Sci. Res. 10 (1), 5233–5236 (2020).
Mujal-Rosas, R., Marin-Genesca, M. & Ballart-Prunell, J. Dielectric properties of various polymers (PVC, EVA, HDPE, and PP) reinforced with ground tire rubber (GTR). Sci. Eng. Compos. Mater. 22 (3), 231–243 (2015).
Abdel-Gawad, N. M. et al. Development of industrial scale PVC nanocomposites with comprehensive enhancement in dielectric properties. IET Sci. Meas. Technol. 13 (1), 90–96 (2019).
Mohamed, S. A. et al. Effect of ethylene carbonate as a plasticizer on CuI/PVA nanocomposite: Structure, optical and electrical properties. J. Adv. Res. 5 (1), 79–86 (2014).
Al-Muntaser, A. et al. Boosting the optical, structural, electrical, and dielectric properties of polystyrene using a hybrid GNP/Cu nanofiller: novel nanocomposites for energy storage applications. J. Mater. Sci.: Mater. Electron. 34 (7), 678 (2023).
Mathur, V., Bremananth, R. & Arya, P. K. Probing Morphological Aspects of PVC/ZnO Nanocomposite through Image Analysis techniques. Micron, 103918. (2025).
Ullah, W. et al. Impact of Electro-UV Aging on the Insulation Performance of PVC/ZnO Nanocomposites for Outdoor Applications (IEEE Access, 2025).
Kowalik, J. et al. Modification of PVC plastisol with silver nanoparticles to obtain protective materials with antibacterial properties. Adv. Sci. Technol. Res. J. 19 (9), 353–368 (2025).
Alshammari, A. H. Investigating the Structural, Optical, and thermal properties of PVC/Cr1. 4Ca0. 6O4 films for potential optoelectronic application. Polymers 17 (19), 2646 (2025).
Ademola, A. O. et al. Development of Polyvinyl chloride composites with enhanced mechanical properties using modified ceramic particles. Iran. Polym. J., : pp. 1–10. (2025).
Ghaffar, A. et al. PVC Polymer/NiO nanocomposites: improved Optical, Dielectric, and magnetic properties for device applications. J. Electron. Mater. 54 (9), 7054–7065 (2025).
Elbasiony, A. et al. Structural and linear/nonlinear optical properties of PVC/ZnFe2O4 nanocomposites for optoelectronic devices. J. Thermoplast. Compos. Mater. 38 (5), 1927–1949 (2025).
Alhassan, S. et al. Linear and nonlinear optical investigations of Polyvinyl chloride modified La2O3 nanocomposite films. Results Phys. 58, 107456 (2024).
El-Aassar, M. et al. Characterization and linear/nonlinear optical properties of PVA/CS/TiO2 polymer nanocomposite films for optoelectronics applications. Opt. Quant. Electron. 55 (14), 1212 (2023).
Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).
Author information
Authors and Affiliations
Contributions
M.A.Attallah : Data curation, Resource, Writing, Methodology, Original draft, review and editing, Visualalization, analysis and conceptilization.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Attallah, M.A. Comprehensive enhancement of PVC nanocomposites through Al2O3 for advanced optoelectronics. Sci Rep (2026). https://doi.org/10.1038/s41598-025-32078-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-32078-8