Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Comprehensive enhancement of PVC nanocomposites through Al2O3 for advanced optoelectronics
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Comprehensive enhancement of PVC nanocomposites through Al2O3 for advanced optoelectronics

  • M. A. Attallah1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Nanoscience and technology
  • Optics and photonics
  • Physics

Abstract

With the rapid advancement of elastic and translucent optoelectronics, the demand for low-cost materials has emerged as a major research topic. As a result, this paper investigated how Al2O3 incorporation altered the properties of PVC. New PVC/xAl2O3 (x = 0, 0.01, 0.03, 0.07, 0.1, 0.2 wt%) nanocomposites were manufactured by using a cost-effective and simple process (casting method) to adjust the Al2O3 concentration. The PVC/xAl2O3 (x = 0, 0.01, 0.03, 0.07, 0.1, 0.2 wt%) nanocomposites were analyzed using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ultraviolet-visible (UV–visible) spectroscopy, and impedance measurements. Dislocation density (δ), Distortion parameter (g), nanoparticle size (D), and lattice strain (ε) were assessed using the Scherrer and Williamson–Hall methods. Crystal size and the number of crystallites were observed to increase with Al2O3 content, revealing the higher crystallinity in the material. It was found that the particle size was ~ 30.22 nm for PVC/xAl2O3 (x = 0.1wt%). SEM analysis showed a consistent distribution of Al2O3 within the PVC at low concentrations of Al2O3. These PVC/Al2O3 films were used as adjustable light- diffusing films in the packaging of different flexible photoelectric devices, according to their visible absorbance characteristic depending on filler concentrations. The optical bandgaps of PVC and PVC/x(Al2O3) (where x = 0.2) were 5.05 eV and 3 eV, respectively. This decrease was associated with the creation of localized states in the bandgap. The refractive index values obtained were greater than those found in earlier studies, suggesting that the incorporation of a small amount of Al2O3 nanoparticles improved the refractive index of PVC. It was noted that as the concentration of Al2O3 rose, the dispersion parameters Ed, M2, and M3 showed an increase, while E0 exhibited a decrease. Conversely, the dielectric characteristics of the synthesized nanocomposites improved as the alumina content in the PVC matrix increased. The findings concluded that inexpensive PVC/xAl2O3(x = 0.1wt%) nanocomposites can be used as an essential component in sophisticated optoelectronic applications.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chougle, A. et al. Evolving role of conjugated polymers in nanoelectronics and photonics. Nano-Micro Lett. 17 (1), 230 (2025).

    Google Scholar 

  2. Musa, A. A. et al. Nano-enhanced polymer composite materials: a review of current advancements and challenges. Polymers 17 (7), 893 (2025).

    Google Scholar 

  3. Althobiti, R. A. et al. Enhancing the performance of PVC/PMMA polymer blend through hybrid nanofiller of TiO2 NPs/GNPs for capacitive energy storage applications. Ceram. Int. 50 (11), 19039–19047 (2024).

    Google Scholar 

  4. Zihlif, A., Faduos, A. S. & Ragosta, G. Optoelectrical properties of polymer composite: polystyrene-containing iron particles. J. Thermoplast. Compos. Mater. 26 (9), 1180–1191 (2013).

    Google Scholar 

  5. Kumar, S. et al. Fabrication of novel red light emitting PVA/ZnO: Eu3 + electrospun composite nanofibers. Results Mater. 26, 100682 (2025).

    Google Scholar 

  6. Kumar, S. et al. Stress-Induced structural phase transition in Polystyrene/NaYF4: Eu3 + Photoluminescent electrospun nanofibers. J. Nanomaterials. 2022 (1), 2173629 (2022).

    Google Scholar 

  7. Kumar, S. et al. Tunable photoluminescence of Polyvinyl alcohol electrospun nanofibers by doping of NaYF4: Eu + 3 nanophosphor. J. Nanomaterials. 2020 (1), 1023589 (2020).

    Google Scholar 

  8. Sadoh, A. et al. Optical properties of low-refractive index polymers. Mater. Sci. Eng. 6 (2), 68–76 (2022).

    Google Scholar 

  9. El Sayed, A. & Morsi, W. α-Fe2O3/(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49 (15), 5378–5387 (2014).

    Google Scholar 

  10. Al-Faleh, R. & Zihlif, A. A study on optical absorption and constants of doped Poly (ethylene oxide). Phys. B: Condens. Matter. 406 (10), 1919–1925 (2011).

    Google Scholar 

  11. Taha, T. & Saleh, A. Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl. Phys. A. 124 (9), 600 (2018).

    Google Scholar 

  12. Abdel-Baset, T., Elzayat, M. & Mahrous, S. Characterization and optical and dielectric properties of Polyvinyl chloride/silica nanocomposites films. Int. J. Polym. Sci. 2016 (1), 1707018 (2016).

    Google Scholar 

  13. Ibrahim, S., Sheha, E. & Abouelhassan, S. The effect of isothermal annealing on the AC conductivity of Polyvinyl Alcohol-based polymer as an energy storage system. J. Basic. Environ. Sci. 11 (4), 670–679 (2024).

    Google Scholar 

  14. Aziz, S. B. et al. Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder. Int. J. Met. 2013 (1), 123657 (2013).

    Google Scholar 

  15. Wilson, J. et al. Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J. Appl. Phys. 95 (3), 1439–1443 (2004).

    Google Scholar 

  16. Ebnalwaled, A. & Thabet, A. Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Met. 220, 374–383 (2016).

    Google Scholar 

  17. Kumar, S. et al. A review on polymeric photoluminiscent nanofibers: Inorganic, organic and perovskites additives for solid-state lighting application. Polym. Sci. Ser. A. 64 (5), 367–392 (2022).

    Google Scholar 

  18. Kumar, S. et al. A novel fabrication of electrospun polyacrylonitrile/NaYF 4: Eu + 3 light emitting nanofibers. RSC Adv. 10 (42), 24855–24861 (2020).

    Google Scholar 

  19. Elbasiony, A. et al. Enhancing the performance of optoelectronic potential of CuO/Al nanoplats in a PVC for medium voltage cables applications. J. Thermoplast. Compos. Mater. 38 (2), 407–434 (2025).

    Google Scholar 

  20. Alkallas, F. H. et al. Influence of Al2O3 nanoparticles on the structural, optical, and electrical properties of PVC/PS nanocomposite for use in optoelectronic devices. Surf. Interfaces. 51, 104651 (2024).

    Google Scholar 

  21. Al Naim, A. et al. Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite. J. Radiation Res. Appl. Sci. 10 (3), 165–171 (2017).

    Google Scholar 

  22. Altowairqi, Y. et al. Optical and dielectric features of PVC/ZnCo2O4/MWCNTs/TBAI polymers for optoelectronic and energy storage applications. Opt. Mater. 154, 115625 (2024).

    Google Scholar 

  23. Mallakpour, S. & Khadem, E. Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Prog. Polym. Sci. 51, 74–93 (2015).

    Google Scholar 

  24. Filatova, E. O. & Konashuk, A. S. Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. J. Phys. Chem. C. 119 (35), 20755–20761 (2015).

    Google Scholar 

  25. Alruwaili, A. et al. Tuning structural, dielectric constants, optoelectrical parameters, and linear/nonlinear optical features of PVC/ZrO2 nanocomposite films for flexible electronic devices. J. Inorg. Organomet. Polym Mater. 35 (5), 3786–3801 (2025).

    Google Scholar 

  26. Abdelhameed, D., Morsi, M. & Elsisi, M. E. Impact of CoCl2 on the structural, morphological, optical, and Magnetic Properties of PCL/PVC Blend for Advanced spintronic/optoelectronic Applications (Ceramics International, 2025).

  27. Ghobashy, M. M. et al. Synthesis of hybrid ZnO nanohexagons and nanorods with CNT embedded in PVC film for advanced insulation and optoelectronic applications. ECS J. Solid State Sci. Technol. 14 (3), 031004 (2025).

    Google Scholar 

  28. El-naggar, A. et al. Nano architectonics and Photo/Electrical properties of PANI/TMAI reinforced PVC/ZnCo2O4/CdS composite polymer for futuristic optoelectronic and energy storage devices. J. Inorg. Organomet. Polym Mater., : pp. 1–17. (2025).

  29. Al-Muntaser, A. et al. Linear and Nonlinear Optical Properties of Pvc/Pmma Polymer Blends Reinforced with Tio2/Gnp Hybrid Fillers for Multifunctional Optoelectronic Applications (Pmma Polymer Blends Reinforced with Tio2/Gnp Hybrid Fillers for Multifunctional Optoelectronic Applications, 2025).

  30. Elbasiony, A. et al. Tailoring the linear and nonlinear optical properties of PVC/PE blend polymer by insertion the spindle copper nanoparticles. Opt. Mater. 148, 114811 (2024).

    Google Scholar 

  31. Mohammed, A. A. et al. Effect of graphene nanoplates and multi-walled carbon nanotubes doping on structural and optical properties of Polyvinyl chloride membranes for outdoor applications. J. Mater. Sci.: Mater. Electron. 35 (6), 440 (2024).

    Google Scholar 

  32. Mohammed, S. J. et al. Organic soluble nitrogen-doped carbon Dots (ONCDs) to reduce the optical band gap of PVC polymer: breakthrough in polymer composites with improved optical properties. Opt. Mater. 149, 115014 (2024).

    Google Scholar 

  33. Yousef, E., Ali, M. & Allam, N. K. Tuning the optical properties and hydrophobicity of BiVO4/PVC/PVP composites as potential candidates for optoelectronics applications. Opt. Mater. 150, 115193 (2024).

    Google Scholar 

  34. El-Naggar, A. et al. Structural, optical, and dielectric properties of PVC/ZnMn2O4/PbS polymers with and without MWCNTs. Opt. Quant. Electron. 56 (1), 13 (2024).

    Google Scholar 

  35. Bhavsar, S., Patel, G. B. & Singh, N. Investigation of optical properties of aluminium oxide doped polystyrene polymer nanocomposite films. Phys. B: Condens. Matter. 533, 12–16 (2018).

    Google Scholar 

  36. Mohammed, G., El, A. M., Sayed & El-Gamal, S. Effect of M nitrates on the optical, dielectric relaxation and porosity of PVC/PMMA membranes (M = Cd, Co, cr or Mg). J. Inorg. Organomet. Polym Mater. 30 (4), 1306–1319 (2020).

    Google Scholar 

  37. Abdelghany, A., Meikhail, M. & Hamdy, R. Enrichment of Poly vinyl chloride (PVC) biological uses through sodium chloride filler, density functional theory (DFT) supported experimental study. J. Adv. Phys., 13(3). (2018).

  38. Kumar, V. et al. Study of optical, structural and chemical properties of neutron irradiated PADC film. Vacuum 86 (3), 275–279 (2011).

    Google Scholar 

  39. Jiang, X. et al. Effect of benzoic acid surface modified alumina nanoparticles on the mechanical properties and crystallization behavior of isotactic polypropylene nanocomposites. RSC Adv. 8 (37), 20790–20800 (2018).

    Google Scholar 

  40. Bhat, V. S. et al. Investigation of impact of Al2O3 nanoparticles on optical, electrical and structural properties of PFO/PMMA films for optoelectronic applications. Discover Mater. 5 (1), 68 (2025).

    Google Scholar 

  41. Jimenez, A. M. et al. Effects of hairy nanoparticles on polymer crystallization kinetics. Macromolecules 52 (23), 9186–9198 (2019).

    Google Scholar 

  42. Eftekhari, A. et al. Fabrication and microstructural characterization of the novel optical ceramic consisting of α-Al2O3@ amorphous alumina nanocomposite core/shell structure. J. Eur. Ceram. Soc. 38 (9), 3297–3304 (2018).

    Google Scholar 

  43. Khalil, R. et al. Microstructure, electrical, optical and electrochemical characteristics of silver phosphate glasses cathode for magnesium battery applications. J. Phys. D. 55 (49), 495303 (2022).

    Google Scholar 

  44. Hassan, E. S. et al. Structural and Optical Properties of Sprayed Ba Doped CdS Nanostructure Thin Films. in Journal of Physics: Conference Series. IOP Publishing. (2020).

  45. Attallah, M. & Sheha, E. Tailoring the electrochemical performance of the polymer electrolyte using Na2H20B4O17 for magnesium sulfur battery applications. Curr. Appl. Phys. 71, 175–183 (2025).

    Google Scholar 

  46. Kumar, V. et al. Effect of gamma irradiation on the properties of plastic bottle sheet. Nucl. Instrum. Methods Phys. Res., Sect. B. 287, 10–14 (2012).

    Google Scholar 

  47. Singha, N. K. & De, P. P. Application of infrared spectroscopy to characterise chemically modified rubbers and rubbery materials. Spectrosc. Rubbers Rubbery Mater. 125. (2002).

  48. Kaur, G., Sharma, A. & Sharma, V. Rapid and non-destructive FTIR-chemometric method for polybag analysis: distinguishing biodegradable from non-biodegradable materials. Next Res. 2 (1), 100111 (2025).

    Google Scholar 

  49. Ramesh, S. et al. FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 66 (4–5), 1237–1242 (2007).

    Google Scholar 

  50. Suvarna, S. & Ramesan, M. Structural, conductivity, mechanical and wettability properties of copper alumina reinforced chlorinated polyethylene/polyvinyl chloride blend nanocomposites. Res. Chem. Intermed., 49(5). (2023).

  51. Pavan, C. et al. Physico-chemical approaches to investigate surface hydroxyls as determinants of molecular initiating events in oxide particle toxicity. Int. J. Mol. Sci. 24 (14), 11482 (2023).

    Google Scholar 

  52. Hart, K. D. et al. Upside-Down adsorption: the counterintuitive influences of surface entropy and surface hydroxyl density on hydrogen spillover. J. Am. Chem. Soc. 146 (44), 30091–30103 (2024).

    Google Scholar 

  53. Choudalakis, G. & Gotsis, A. Free volume and mass transport in polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 17 (3), 132–140 (2012).

    Google Scholar 

  54. Cao, L. et al. Nanocellulose-a sustainable and efficient nanofiller for rubber nanocomposites: from reinforcement to smart soft materials. Polym. Rev. 62 (3), 549–584 (2022).

    Google Scholar 

  55. Rabie, S. T. et al. Synthesis and characterization of functionalized modified PVC-chitosan as antimicrobial polymeric biomaterial. Polym. Bull. 80 (8), 8899–8918 (2023).

    Google Scholar 

  56. Khdary, N. H., Almuarqab, B. T., El, G. & Enany Nanoparticle-embedded polymers and their applications: a review. Membranes 13 (5), 537 (2023).

    Google Scholar 

  57. Gobena, S. T. & Woldeyonnes, A. D. A review of synthesis methods, and characterization techniques of polymer nanocomposites for diverse applications. Discover Mater. 4 (1), 52 (2024).

    Google Scholar 

  58. Ashraf, M. A. et al. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res. Lett. 13 (1), 214 (2018).

    Google Scholar 

  59. Deghiedy, N. & El-Sayed, S. Evaluation of the structural and optical characters of PVA/PVP blended films. Opt. Mater. 100, 109667 (2020).

    Google Scholar 

  60. Nimrodh Ananth, A. et al. On the optical and thermal properties of in situ/ex situ reduced ag NP’s/PVA composites and its role as a simple SPR-based protein sensor. Appl. Nanosci. 1 (2), 87–96 (2011).

    Google Scholar 

  61. Elashmawi, I. S. & Menazea, A. A. Different time’s nd: YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. J. Mater. Res. Technol. 8 (2), 1944–1951 (2019).

    Google Scholar 

  62. Hiremath, A. et al. Nanoparticles filled polymer nanocomposites: a technological review. Cogent Eng. 8 (1), 1991229 (2021).

    Google Scholar 

  63. Zare, Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos. Part A: Appl. Sci. Manufac. 84, 158–164 (2016).

    Google Scholar 

  64. Kumar, A. & Kumar, N. Advances in transparent polymer nanocomposites and their applications: A comprehensive review. Polymer-Plastics Technol. Mater. 61 (9), 937–974 (2022).

    Google Scholar 

  65. Al-Bataineh, Q. M. et al. A novel optical model of the experimental transmission spectra of nanocomposite PVC-PS hybrid thin films doped with silica nanoparticles. Heliyon, 6(6). (2020).

  66. D’souza, O. J. et al. Fabrication and study of Poly (vinyl alcohol) film functionalized with Basella Alba stem extract. J. Polym. Environ. 30 (7), 2888–2904 (2022).

    Google Scholar 

  67. Narasagoudr, S. S. et al. Ethyl Vanillin incorporated chitosan/poly (vinyl alcohol) active films for food packaging applications. Carbohydr. Polym. 236, 116049 (2020).

    Google Scholar 

  68. Rajendran, S., Sivakumar, P. & Babu, R. S. Studies on the salt concentration of a PVdF–PVC based polymer blend electrolyte. J. Power Sources. 164 (2), 815–821 (2007).

    Google Scholar 

  69. Dhatarwal, P. & Sengwa, R. Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics. Phys. B: Condens. Matter. 613, 412989 (2021).

    Google Scholar 

  70. Ma, X. et al. Application of β-diketone Boron complex as an ultraviolet absorber in Polyvinyl chloride film. Mater. Res. Express. 7 (7), 076403 (2020).

    Google Scholar 

  71. Rabee, B. H., Razooqi, F. Z. & Shinen, M. Investigation of optical properties for (PVA-PEG-Ag) polymer nanocomposites films. Chem. Mater. Res. 7 (4), 103–109 (2015).

    Google Scholar 

  72. Mahdi, S. M. & Habeeb, M. A. Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biological applications. Polym. Bull. 80 (12), 12741–12760 (2023).

    Google Scholar 

  73. Alshammari, A. H. Structural, optical, and thermal properties of PVA/SrTiO3/CNT polymer nanocomposites. Polymers 16 (10), 1392 (2024).

    Google Scholar 

  74. Almaghamsi, H. Structural, optical, and morphological properties of PVC-BaTiO3 nanocomposite films. J. Mol. Liq. 412, 125826 (2024).

    Google Scholar 

  75. Abed, R. N. et al. Enhancing optical properties of modified PVC and Cr2O3 nanocomposite. Trans. Electr. Electron. Mater. 22 (3), 317–327 (2021).

    Google Scholar 

  76. Nadtochiy, A. et al. Graphene-Based Polymer Nanocomposites (Springer, 2024).

  77. Rossi, S. Reflective Structural Colors and their Actuation Using Electroactive Conducting Polymers (Linkopings Universitet (Sweden), 2022).

  78. Yenchalwar, S. G. Surface plasmon induced enhancement in the optical and photocurrent properties of metal-semiconductor hybrids. (2016).

  79. Mamand, D. M. et al. Improved optical characteristics of PEO polymer integrated with graphene oxide. Sci. Rep. 15 (1), 32225 (2025).

    Google Scholar 

  80. Maliakal, A. et al. Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications. J. Am. Chem. Soc. 127 (42), 14655–14662 (2005).

    Google Scholar 

  81. Okuyama, K., Wang, W. N. & Iskandar, F. Technology innovation in the nanoparticle Project—Synthesis of nanoparticles and Nanocomposites—[Translated]. Kona Powder Part. J. 25, 237–243 (2007).

    Google Scholar 

  82. Mahmoud, A., Abdel-Rahim, M. & Mohamed, M. Role of the annealing temperature for optimizing the optical and electronic parameters of Ge10Se75Ag15 films for optoelectronic applications. Opt. Quant. Electron. 53 (5), 236 (2021).

    Google Scholar 

  83. Soliman, T. & Abouhaswa, A. Synthesis and structural of Cd0. 5Zn0. 5F2O4 nanoparticles and its influence on the structure and optical properties of Polyvinyl alcohol films. J. Mater. Sci.: Mater. Electron. 31 (12), 9666–9674 (2020).

    Google Scholar 

  84. Thabet, A., Al Mufadi, F. A. & Ebnalwaled, A. Synthesis and measurement of optical light characterization for modern cost-fewer Polyvinyl chloride nanocomposites thin films. Trans. Electr. Electron. Mater. 25 (1), 98–109 (2024).

    Google Scholar 

  85. Soliman, T. & Vshivkov, S. Effect of Fe nanoparticles on the structure and optical properties of Polyvinyl alcohol nanocomposite films. J. Non-cryst. Solids. 519, 119452 (2019).

    Google Scholar 

  86. Mohamed, M. et al. Composition dependence of structural and linear and non-linear optical properties of CdS1 – x Mn x semiconducting thin films. Appl. Phys. A. 125 (7), 483 (2019).

    Google Scholar 

  87. Ali, H. E. & Khairy, Y. Microstructure and optical properties of Ni2 + doped PVA for optoelectronic devices. Phys. B: Condens. Matter. 570, 41–47 (2019).

    Google Scholar 

  88. Abdullah, O. G. et al. Reducing the optical band gap of Polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci.: Mater. Electron. 26 (7), 5303–5309 (2015).

    Google Scholar 

  89. Mahdi, M. & Al-Ani, S. Optical characterization of chemical bath deposition Cd1-xZnxS thin films. Int. J. Nanoelectronics Mater. 5, 11–24 (2012).

    Google Scholar 

  90. Shah, N. et al. Structural, electrical, and optical properties of copper indium diselenide thin film prepared by thermal evaporation method. Thin Solid Films. 517 (13), 3639–3644 (2009).

    Google Scholar 

  91. Saini, I. et al. Tailoring of electrical, optical and structural properties of PVA by addition of ag nanoparticles. Mater. Chem. Phys. 139 (2–3), 802–810 (2013).

    Google Scholar 

  92. Abomostafa, H. & Abulyazied, D. Linear and nonlinear optical response of nickel core–shell@ silica/PMMA nanocomposite film for flexible optoelectronic applications. J. Inorg. Organomet. Polym Mater. 31 (7), 2902–2914 (2021).

    Google Scholar 

  93. Shehap, A. & Akil, D. S. Structural and optical properties of TiO 2 nanoparticles/PVA for different composites thin films. Int. J. Nanoelectronics Mater., 9(1). (2016).

  94. Soliman, T., Vshivkov, S. & Elkalashy, S. I. Structural, linear and nonlinear optical properties of Ni nanoparticles–Polyvinyl alcohol nanocomposite films for optoelectronic applications. Opt. Mater. 107, 110037 (2020).

    Google Scholar 

  95. Alotaibi, S. et al. In-depth investigation of thickness-dependence of structural, linear, and nonlinear spectroscopic properties of Al-doped Cu (In, Ga) Se2 grown by a one-step sputtering process. Opt. Mater. 160, 116707 (2025).

    Google Scholar 

  96. Cotter, D. et al. Nonlinear optics for high-speed digital information processing. Science 286 (5444), 1523–1528 (1999).

    Google Scholar 

  97. Divya, S. et al. Evaluation of nonlinear optical parameters of TiN/PVA nanocomposite–A comparison between semi empirical relation and Z-Scan results. Curr. Appl. Phys. 14 (1), 93–98 (2014).

    Google Scholar 

  98. Alruwaili, A., Mohamed, M. & Sayed, A. M. E. Influence of Bi2O3, PbO, and Y2O3 nanofillers on the physical features of Polyvinyl chloride: materials for optoelectronics or dielectric applications. J. Mater. Sci.: Mater. Electron. 35 (23), 1581 (2024).

    Google Scholar 

  99. El-Khiyami, S. S., Ismail, A. & Hafez, R. Characterization, optical and conductivity study of nickel oxide based nanocomposites of polystyrene. J. Inorg. Organomet. Polym Mater. 31 (11), 4313–4325 (2021).

    Google Scholar 

  100. Elarasasi, T. Y. et al. Linear and Non linear optical properties of PVA-Ag/Coumarin nanocomposites (again). Egypt. J. Solids. 44 (1), 1–25 (2022).

    Google Scholar 

  101. Ahmed, M. et al. Linear and non-linear optical parameters of copper chloride doped Poly (vinyl alcohol) for optoelectronic applications. Egypt. J. Chem. 65 (9), 99–108 (2022).

    Google Scholar 

  102. Badran, H. A. et al. Study of the linear optical properties and surface energy loss of 5’, 5-dibromo-o-cresolsulfophthalein thin films. Chalcogenide Lett. 9 (12), 483–493 (2012).

    Google Scholar 

  103. El-Naggar, A. et al. Effect of PANI addition on structural, optical and electrical characteristics of PVC/Sn0. 9Fe0. 1S2 polymer. Opt. Quant. Electron. 55 (11), 998 (2023).

    Google Scholar 

  104. Suma, G. et al. Effect of Ce0. 5Zr0. 5O2 nano fillers on structural and optical behaviors of Poly (vinyl alcohol). J. Mater. Sci.: Mater. Electron. 28 (14), 10707–10714 (2017).

    Google Scholar 

  105. Taha, T. et al. Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 76 (9), 4769–4784 (2019).

    Google Scholar 

  106. Fadel, M. et al. Structural and optical properties of SeGe and SeGeX (X = In, Sb and Bi) amorphous films. J. Alloys Compd. 485 (1–2), 604–609 (2009).

    Google Scholar 

  107. Khan, S. A. et al. Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Curr. Appl. Phys. 10 (1), 145–152 (2010).

    Google Scholar 

  108. Abdel-Aziz, M. et al. Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films. Appl. Surf. Sci. 252 (23), 8163–8170 (2006).

    Google Scholar 

  109. Mortadi, H. et al. Investigation of optical, electrical and dielectric properties of pyrophosphates LixCu2-x/2 P2O7 (x = 0.0; 0.05; 0.1). J. Solid State Chem. 316, 123609 (2022).

    Google Scholar 

  110. Eissa, A. et al. Studies on AC electrical conductivity and dielectric properties of organic Acid-Doped PVA solid polymer electrolyte films. J. Basic. Environ. Sci. 12 (1), 38–59 (2025).

    Google Scholar 

  111. Samet, M., Kallel, A. & Serghei, A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: scaling laws and applications. J. Compos. Mater. 56 (20), 3197–3217 (2022).

    Google Scholar 

  112. Hanani, Z. et al. The paradigm of the filler’s dielectric permittivity and aspect ratio in high-k polymer nanocomposites for energy storage applications. J. Mater. Chem. C. 10 (30), 10823–10831 (2022).

    Google Scholar 

  113. Tan, D. Q. The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites. J. Appl. Polym. Sci. 137 (33), 49379 (2020).

    Google Scholar 

  114. You, L. et al. Energy storage performance of polymer-based dielectric composites with two-dimensional fillers. Nanomaterials 13 (21), 2842 (2023).

    Google Scholar 

  115. Zhang, X. et al. Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces. 5 (11), 1800096 (2018).

    Google Scholar 

  116. Vijayakumar, V. & Nam, S. Y. Dielectric properties of polyvinylchloride (PVC) composites and nanocomposites. Poly (Vinyl Chloride) Based Composites and Nanocomposites, 319–334. (2023).

  117. Alwan, E. K. et al. Synthesis of Cobalt iron oxide doped by chromium using sol-gel method and application to remove malachite green dye. NeuroQuantology 19 (8), 32–41 (2021).

    Google Scholar 

  118. Wang, Q. et al. Contributing factors of dielectric properties for polymer matrix composites. Polymers 15 (3), 590 (2023).

    Google Scholar 

  119. Ray, S. S. & Okamoto, M. Polymer/layered silicate nanocomposites: a review from Preparation to processing. Prog. Polym. Sci. 28 (11), 1539–1641 (2003).

    Google Scholar 

  120. Nelson, J. & Hu, Y. Nanocomposite dielectrics—properties and implications. J. Phys. D. 38 (2), 213 (2005).

    Google Scholar 

  121. Elsad, R. et al. Evaluation of dielectric properties for PVC/SiO2 nanocomposites under the effect of water absorption. J. Mater. Sci.: Mater. Electron. 34 (9), 786 (2023).

    Google Scholar 

  122. Madani, L., Belkhir, K. S. & Belkhiat, S. Experimental study of electric and dielectric behavior of PVC composites. Eng. Technol. Appl. Sci. Res. 10 (1), 5233–5236 (2020).

    Google Scholar 

  123. Mujal-Rosas, R., Marin-Genesca, M. & Ballart-Prunell, J. Dielectric properties of various polymers (PVC, EVA, HDPE, and PP) reinforced with ground tire rubber (GTR). Sci. Eng. Compos. Mater. 22 (3), 231–243 (2015).

    Google Scholar 

  124. Abdel-Gawad, N. M. et al. Development of industrial scale PVC nanocomposites with comprehensive enhancement in dielectric properties. IET Sci. Meas. Technol. 13 (1), 90–96 (2019).

    Google Scholar 

  125. Mohamed, S. A. et al. Effect of ethylene carbonate as a plasticizer on CuI/PVA nanocomposite: Structure, optical and electrical properties. J. Adv. Res. 5 (1), 79–86 (2014).

    Google Scholar 

  126. Al-Muntaser, A. et al. Boosting the optical, structural, electrical, and dielectric properties of polystyrene using a hybrid GNP/Cu nanofiller: novel nanocomposites for energy storage applications. J. Mater. Sci.: Mater. Electron. 34 (7), 678 (2023).

    Google Scholar 

  127. Mathur, V., Bremananth, R. & Arya, P. K. Probing Morphological Aspects of PVC/ZnO Nanocomposite through Image Analysis techniques. Micron, 103918. (2025).

  128. Ullah, W. et al. Impact of Electro-UV Aging on the Insulation Performance of PVC/ZnO Nanocomposites for Outdoor Applications (IEEE Access, 2025).

  129. Kowalik, J. et al. Modification of PVC plastisol with silver nanoparticles to obtain protective materials with antibacterial properties. Adv. Sci. Technol. Res. J. 19 (9), 353–368 (2025).

    Google Scholar 

  130. Alshammari, A. H. Investigating the Structural, Optical, and thermal properties of PVC/Cr1. 4Ca0. 6O4 films for potential optoelectronic application. Polymers 17 (19), 2646 (2025).

    Google Scholar 

  131. Ademola, A. O. et al. Development of Polyvinyl chloride composites with enhanced mechanical properties using modified ceramic particles. Iran. Polym. J., : pp. 1–10. (2025).

  132. Ghaffar, A. et al. PVC Polymer/NiO nanocomposites: improved Optical, Dielectric, and magnetic properties for device applications. J. Electron. Mater. 54 (9), 7054–7065 (2025).

    Google Scholar 

  133. Elbasiony, A. et al. Structural and linear/nonlinear optical properties of PVC/ZnFe2O4 nanocomposites for optoelectronic devices. J. Thermoplast. Compos. Mater. 38 (5), 1927–1949 (2025).

    Google Scholar 

  134. Alhassan, S. et al. Linear and nonlinear optical investigations of Polyvinyl chloride modified La2O3 nanocomposite films. Results Phys. 58, 107456 (2024).

    Google Scholar 

  135. El-Aassar, M. et al. Characterization and linear/nonlinear optical properties of PVA/CS/TiO2 polymer nanocomposite films for optoelectronics applications. Opt. Quant. Electron. 55 (14), 1212 (2023).

    Google Scholar 

Download references

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Author information

Authors and Affiliations

  1. Physics Department, Faculty of Science, Benha University, Benha, 13518, Egypt

    M. A. Attallah

Authors
  1. M. A. Attallah
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.A.Attallah : Data curation, Resource, Writing, Methodology, Original draft, review and editing, Visualalization, analysis and conceptilization.

Corresponding author

Correspondence to M. A. Attallah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attallah, M.A. Comprehensive enhancement of PVC nanocomposites through Al2O3 for advanced optoelectronics. Sci Rep (2026). https://doi.org/10.1038/s41598-025-32078-8

Download citation

  • Received: 09 August 2025

  • Accepted: 08 December 2025

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41598-025-32078-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • PVC
  • Al2O3
  • Transmittance
  • Energy loss
  • Dielectric constant
  • Optoelectronic applications
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing