Table 3 Mathematical equations.
Model/Equation No | Equation | Definition |
|---|---|---|
Equation (1): Particle size calculation from XRD | DXRD = 0.9λ/(βcos θ) | DXRD is the average particle diameter, λ is the Cu kα wavelength, β is the full-width at half-maximum (FWHM) of the diffraction peak and θ is the diffraction angle. |
Equation (2): QDs and NPs capacity | \(\:{Q}_{e}=\left({C}_{0}-{C}_{e}\right)\frac{V*{10}^{3}}{M}\:\:\) | C0 and Ce (mol L− 1) are the initial and equilibrium concentrations, respectively. V: the volume solution and M: the used mass of adsorbent. The concentrations of Cr(VI)/Cur were detected by spectrophotometry (Unico UV/Vis-7200) at λmax = 480 nm. |
Equation (3): Pseudo-first order | \(\:{q}_{t}={q}_{e\:}(1-{e}^{-kt})\) | qt (mg g− 1), amount of adsorbate adsorbed at time t. k1 (sec − 1), pseudo-first order rate constant. |
Equation (4): Pseudo-second order | \(\:{q}_{t}=\frac{{\text{k}}_{2}\:{{q}_{e}}^{2}t}{{1+\text{K}}_{2}{{\text{q}}^{2}}_{\text{e}}t\:\:}\) | k2 (g mg− 1 sec− 1), pseudo-second order rate constant |
Equation (5): Intraparticle diffusion | \(\:{\text{q}}_{\text{t}}={\text{K}}_{\text{i}\text{d}}{\text{t}}^{\frac{1}{2}}+\text{C}\) | Kid (mg g− 1 sec− 1/2), the intra-particle diffusion rate constant. C (mg g− 1), constant. |
Equation (6): Elvoich | \(\:{q}_{t}=\raisebox{1ex}{$1$}\!\left/\:\!\raisebox{-1ex}{$\beta\:$}\right.ln(\alpha\:\beta\:t+1)\) | α (mg g− 1 sec− 1), the initial adsorption rate. Β, is related to the extent of surface coverage and the activation energy for chemisorption |
Equation (7): Langmuir | \(\:{q}_{e}=\frac{{q}_{m}{\text{k}}_{L}\:{C}_{e}}{{1+\text{K}}_{L}{C}_{e}\:\:}\:\:\:\:\:\) | qe (mg g− 1), equilibrium adsorption capacity. qmax (mg g− 1), maximum adsorption capacity. b (L mg− 1), Langmuir constant. Ce (mg L− 1), equilibrium adsorbate concentration in solution. |
Equation (8): Langmuir, separation factor | \(\:{\:\:\text{R}}_{\text{L}}=1/(1+\text{b}{C}_{o})\) | RL, separation factor. b (L mg− 1), Langmuir constant. |
Equation (9): Freundlich | \(\:{\text{q}}_{e}={\text{K}}_{f}{{C}_{e}}^{\frac{1}{n}}\) | Kf (L mg− 1), Freundlich constant. n, heterogeneity factor. |
Equation (10): D-R | \(\:{q}_{e}={q}_{s\:}\left({e}^{-\beta\:{\epsilon\:}^{2}}\right)\) | Kad (mol2 J− 2), Dubinin-Radushkevich constant. ε, Polanyi potential. |
Equation (11): D-R, Polanyi potential | \(\:{\upepsilon\:}=\text{R}\text{T}\text{l}\text{n}\:(1+\frac{1}{{\text{C}}_{\text{e}}})\) | R, universal gas constant (8.314 J mol− 1 K− 1). T (K), absolute temperature. Ce (mg L− 1), Cr(VI)/Cur equilibrium concentration. |
Equation (12): Temkin | \(\:{\text{q}}_{e}=\left(\frac{RT}{b}\right)\text{l}\text{n}{a}_{T}{C}_{e}\) | AT (L mg− 1), Temkin adsorption potential. bT (J mol− 1), Temkin constant. qe (mg g− 1), theoretical maximum capacity. |
Equation (13): Gibbs free energy | ΔGo=-RT ln Kd | ΔGo (kJ mol− 1), Gibbs free energy. Kd, equilibrium constant. T (K), absolute temperature. R, universal gas constant (8.314 J mol− 1 K− 1). |
Equation (14): Equilibrium constant | \(\:{\:\:\text{K}}_{\text{d}}=\frac{{\text{q}}_{\text{e}}}{{\text{c}}_{\text{e}}}\) | Kd, equilibrium constant. qe (mg g− 1), equilibrium adsorption capacity. Ce (mg L− 1), Cr(VI)/Cur equilibrium concentration. |
Equation (15): Vant`hoff | \(\:{\text{ln}\text{K}}_{\text{d}}=\frac{{\Delta\:}{\text{S}}^{\text{O}}}{\text{R}}-\frac{{\Delta\:}{\text{H}}^{\text{O}}}{\text{R}\text{T}}\) | Kd, equilibrium constant. ΔHo (KJ mol− 1), enthalpy change. ΔSo(J mol− 1 K− 1), entropy change. R, universal gas constant (8.314 J mol− 1 K− 1). |