Table 1 Quantitative Comparison on DeepShip Dataset.

From: Hybrid local-global representation learning with stochastic Gaussian classification for underwater acoustic target recognition

Type

Method

Venue

Sup.

Self-sup.

Acc.

Prec.

Rec.

F1

Traditional ML

SVM

ESA

(2021)

\(\checkmark\)

 

72.24

72.49

72.08

72.28

RF

\(\checkmark\)

 

69.71

69.79

69.86

69.82

KNN

\(\checkmark\)

 

62.71

63.61

63.10

63.35

Deep Learning

SCAE

ESA

(2021)

\(\checkmark\)

 

77.53

77.75

77.41

77.58

Residual CNN

\(\checkmark\)

 

76.98

77.05

76.81

76.92

Inception

\(\checkmark\)

 

76.16

76.03

76.12

76.08

DNN

\(\checkmark\)

 

73.11

72.98

73.08

73.03

SSAST

AAAI 2022

 

\(\checkmark\)

77.70

78.13

78.25

78.19

AudioMAE

NeurIPS 2022

 

\(\checkmark\)

76.66

85.54

79.00

82.14

SSLM-M

JASA 2023

 

\(\checkmark\)

80.22

80.81

79.94

80.07

SNANet

AA 2023

\(\checkmark\)

 

78.25

79.55

79.39

79.16

MIXUP

JSTARS 2023

 

\(\checkmark\)

86.33

85.72

82.91

84.29

TR-Tral

TASLP 2024

 

\(\checkmark\)

87.26

87.45

87.80

87.50

Ours

—

 

\(\checkmark\)

88.48

89.42

89.41

89.41

  1. Models are grouped by method category and by supervised or self-supervised training. All values are reported in percentage (%).
  2. Bold values denotes the best performance for this metric.