Table 3 Comparison of performance metrics across study areas and pollutants.

From: Air quality prediction using multi-source remote sensing data integration with hybrid deep learning framework

Model

PM2.5

PM10

NO2

O3

RMSE (µg/m³)

MAST-Net

8.2 ± 1.1

12.4 ± 1.8

6.7 ± 0.9

15.3 ± 2.1

CNN-LSTM

11.6 ± 1.4

17.2 ± 2.3

9.8 ± 1.2

21.7 ± 2.8

CNN-LSTM-Attention

10.3 ± 1.2

15.1 ± 2.0

8.4 ± 1.0

19.2 ± 2.4

Random Forest

15.3 ± 2.1

22.1 ± 3.2

12.4 ± 1.6

26.8 ± 3.5

SVR

18.7 ± 2.5

25.8 ± 3.8

14.2 ± 1.8

29.3 ± 4.1

Linear Regression

22.4 ± 3.1

31.2 ± 4.5

16.8 ± 2.2

35.6 ± 5.2

R² Score

MAST-Net

0.91 ± 0.03

0.89 ± 0.04

0.94 ± 0.02

0.87 ± 0.05

CNN-LSTM

0.84 ± 0.04

0.81 ± 0.05

0.87 ± 0.03

0.79 ± 0.06

CNN-LSTM-Attention

0.87 ± 0.03

0.84 ± 0.04

0.90 ± 0.02

0.82 ± 0.05

Random Forest

0.76 ± 0.05

0.73 ± 0.06

0.79 ± 0.04

0.71 ± 0.07

MAE (µg/m³)

MAST-Net

6.1 ± 0.8

9.2 ± 1.3

4.9 ± 0.7

11.8 ± 1.6

CNN-LSTM

8.9 ± 1.1

13.5 ± 1.9

7.6 ± 0.9

17.2 ± 2.3

Random Forest

12.1 ± 1.7

17.8 ± 2.6

9.8 ± 1.2

21.4 ± 2.9