Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
High tensile strength and transformation-induced plasticity in bulk polycrystalline omega titanium
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

High tensile strength and transformation-induced plasticity in bulk polycrystalline omega titanium

  • Norimasa Nishiyama1,2 nAff3,
  • Yoshinori Tange1,
  • Takashi Sawahata2,
  • Masafumi Matsushita4,
  • Kazuya Tokuda5,
  • Kosuke Tominaga5,
  • Takashi Sekiya5,
  • Koji Kuramochi5,
  • Keita Sasaki1,
  • Fumihiro Wakai2,
  • Zenji Horita6,7,8,
  • Yutaka Kobayashi1 &
  • …
  • Akio Fujimura1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Materials science

Abstract

Titanium and its alloys exhibit advantageous ductility and strength-to-weight ratios, which makes them suitable for use as structural materials in numerous industrial applications. The ω phase has been observed to precipitate during the aging process of titanium alloys, resulting in a loss of ductility. Here we report tensile behavior of bulk polycrystalline ω-titanium with a chemical composition of commercially pure titanium grade 4 and an average grain size of 3.4 μm. We observed that stress-induced ω → α martensitic phase transformation occurs exclusively in the plastic regime. As plastic deformation proceeds, the volume fraction of α-phase increases. The 0.2% offset yield strength, tensile strength, and elongation to failure were determined to be 1130 ± 30 MPa, 1220 ± 30 MPa, and 16 ± 2%, respectively. The present study revealed transformation-induced plasticity in this material. The mechanical properties of this material with the pure titanium composition are comparable to those of a titanium alloy Ti-6Al-4 V. The bulk polycrystalline ω-titanium can potentially be utilized for biomedical applications, such as dental implants.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hennig, R. G., Lenosky, T. J., Trinkle, D. R., Rudin, S. P. & Wilkins, J. W. Classical potential describes martensitic phase transformations between α, β, and ω titanium phases. Phys. Rev. B. 78, 054121 (2008).

    Google Scholar 

  2. Jamieson, J. C. Crystal structures of titanium, zirconium, and hafnium at high pressures. Science 140, 72–73 (1963).

    Google Scholar 

  3. Akahama, Y., Kawamura, H. & Le Bihan, T. New δ (Distorted-bcc) titanium to 220 GPa. Phys. Rev. Lett. 87, 275503 (2001).

    Google Scholar 

  4. Dewaele, A. et al. High pressure-temperature phase diagram and equation of state of titanium. Phys. Rev. B. 91, 134108 (2015).

    Google Scholar 

  5. Ankem, S. & Greene, C. A. Recent developments in microstructure/property relationships of beta titanium alloys. Mater. Sci. Eng. A. 263, 127–131 (1999).

    Google Scholar 

  6. Mohammed, M. T., Khan, Z. A. & Siddiquee, A. N. Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review. Int. J. Chem. Nucle Metall. Mater. Eng. 8, 726–731 (2014).

    Google Scholar 

  7. Hickman, B. S. The formation of Omega phase in titanium and zirconium alloys: a review. J. Mater. Sci. 4, 554–563 (1969).

    Google Scholar 

  8. Williams, J. C., Hickman, B. S. & Marcus, H. L. The effect of Omega phase on the mechanical properties of titanium alloys. Metall. Trans. 2, 1913–1919 (1971).

    Google Scholar 

  9. Sun, F. et al. Strengthening strategy for a ductile metastable β-titanium alloy using low-temperature aging. Mater. Res. Lett. 5, 547–553 (2017).

    Google Scholar 

  10. Koul, M. K. & Breedis, J. F. Omega phase embrittlement in aged Ti-V. Metall. Trans. 1, 1451–1452 (1970).

    Google Scholar 

  11. Brumbauer, F., Okamoto, N. L., Ichitsubo, T., Sprengel, W. & Luckabauer, M. Minor additions of Sn suppress the Omega phase formation in beta titanium alloys. Acta Mater. 262, 119466 (2024).

    Google Scholar 

  12. Illarionov, A. G., Popov, A. A., Grib, S. V. & Elkina, O. A. Special features of formation of omega-phase in titanium alloys due to hardening. Metal Sci. Heat. Treat. 52, 493–498 (2011).

    Google Scholar 

  13. Sun, F. et al. Strengthening strategy for a ductile metastable b-titanium alloy using low-temperature aging. Mater. Res. Lett. 5, 547–553 (2017).

    Google Scholar 

  14. Quin, B. et al. Mechanisms underlying enhanced strength-ductility combinations in TRIP/TWIP Ti-12Mo alloy engineered via isothermal Omega precipitation. Acta Mater. 245, 118619 (2023).

    Google Scholar 

  15. Todaka, Y., Sasaki, J., Moto, T. & Umemoto, M. Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining. Scripta Mater. 59, 615–618 (2008).

    Google Scholar 

  16. Tane, M., Okuda, Y., Todaka, Y., Ogi, H. & Nagakubo, A. Elastic properties of single-crystalline ω phase in titanium. Acta Mater. 61, 7543–7554 (2013).

    Google Scholar 

  17. Trinkle, D. R. et al. Empirical tight-binding model for titanium phase transformations. Phys. Rev. B. 73, 094123 (2006).

    Google Scholar 

  18. Li, S., Yuan, Q., Zhang, J., Li, Y. & He, D. Towards pure: the single-phase bulk Omega titanium and modulation on its elastic properties under biaxial strains. J. Alloys Compd. 906, 164312 (2022).

    Google Scholar 

  19. Sawahata, T. et al. High compressive strength of bulk polycrystalline ω phase in pure titanium. Mater. Trans. 66, 616–621 (2025).

    Google Scholar 

  20. Vohra, Y. K., Sikka, S. K., Vaidya, S. N. & Chidambaram, R. Impurity effects and reaction kinetics of the pressure-induced α ◊ ω transformation in Ti. J. Phys. Chem. Solids. 38, 1293–1296 (1977).

    Google Scholar 

  21. Cerreta, E., Gray, I. I. I., Lawson, G. T., Mason, A. C., Morris, C. E. & T. A. & The influence of oxygen content on the α to ω phase transformation and shock hardening of titanium. J. Appl. Phys. 100, 013530 (2006).

    Google Scholar 

  22. Hennig, R. G. et al. Impurities block the α to ω martensitic transformation in titanium. Nat. Mater. 4, 129–133 (2005).

    Google Scholar 

  23. Finlay, W. L. & Snyder, J. A. Effect of three interstitial solutions (nitrogen, oxygen, and carbon) on the mechanical properties of high-purity, alpha titanium. JOM 2, 277–286 (1950).

    Google Scholar 

  24. Simbi, D. J. & Scully, J. C. The effect of residual interstitial elements and iron on mechanical properties of commercially pure titanium. Mater. Lett. 26, 35–39 (1996).

    Google Scholar 

  25. Oh, J. M. et al. Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V. Met. Mater. Int. 17, 733–736 (2011).

    Google Scholar 

  26. Miura, H., Kobayashi, M., Aoba, T., Aoyama, H. & Benjanarasuth, T. An approach for room-temperature multi-directional forging of pure titanium for strengthening. Mater. Sci. Eng. A. 731, 603–608 (2018).

    Google Scholar 

  27. O Hall, E. The deformation and ageing of mild streel: III discussion of results. Proc. Phys. Soc. Lond. 64, 747–753 (1951).

    Google Scholar 

  28. Petch, N. J. The cleavage strength of polycrystals. J. Iron Steel Inst. 173, 25–28 (1953).

    Google Scholar 

  29. Li, X. & Lu, K. Refining grains of metals through plastic deformation: toward grain size limits. Acc. Mater. Res. 2, 108–113 (2021).

    Google Scholar 

  30. Rusinko, A. K., Ginsztler, J. & Devenyi, L. Analytic description of the formation of pores under conditions of steady-state creep of metals. Strength. Mater. 39, 74–79 (2007).

    Google Scholar 

  31. Van Bueren, H. G. Theory of the formation of lattice defects during plastic deformation. Acta Metall. 3, 519–524 (1955).

    Google Scholar 

  32. Wasz, M. L., Brotzen, F. R., McLellan, R. B. & Griffin, A. J. Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium. Inter. Mater. Rev. 41, 1 (1996).

  33. Usikov, M. P. & Zilbershtein, V. A. The orientation relationship Bwtween the w-phases of titanium and zirconium. Phys. Status Solidi A. 19, 53–58 (1973).

    Google Scholar 

  34. Trinkle, D. et al. New mechanism for the α to ω martensitic transformation in pure titanium. Phys. Rev. Lett. 91, 025701 (2003).

    Google Scholar 

  35. Silcock, J. M. An x-ray examination of the ω phase in TiV, TiMo and ticr alloys. Acta Metallur. 6, 481–493 (1958).

    Google Scholar 

  36. Zahiri, A. H., Ombogo, J., Ma, T., Chakraborty, P. & Cao, L. Transformation-induced plasticity in Omega titanium. J. Appl. Phys. 129, 015105 (2021).

    Google Scholar 

  37. Fischer, F. D. et al. A new view on transformation induced plasticity (TRIP). Int. J. Plast. 16, 723–748 (2000).

    Google Scholar 

  38. Zong, H., Xue, D., Ding, X. & Lookman, T. Phase transformations in titanium: anisotropic deformation of ω phase. J. Phys. : Conf. Ser. 500, 112042 (2014).

    Google Scholar 

  39. Shah, F. A., Trobos, M., Thomsen, P. & Palmquist, A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants – is one truly better than the other? Mater. Sci. Eng. C. 62, 960–966 (2016).

    Google Scholar 

  40. Nicholson, J. W. Titanium alloys for dental implants: a review. Prosthesis 2, 100–116 (2020).

    Google Scholar 

  41. Buser, D., Sennerby, L. & De Bruyn, H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology 2000. 73, 7–21 (2017).

    Google Scholar 

  42. Hanawa, T. Biocompatibility of titanium from the viewpoint of its surface. Sci. Tech. Adv. Mater. 23, 457–472 (2022).

    Google Scholar 

  43. Kawai, N. & Endo, S. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Rev. Sci. Instrum. 41, 1178–1181 (1970).

    Google Scholar 

  44. Horita, Z. & Langdon, T. G. Achieving exceptional superplasticity in a bulk aluminum alloy processed by high-pressure torsion. Scripta Mater. 58, 1029–1032 (2008).

    Google Scholar 

  45. Edalati, K., Matsubara, E. & Horita, Z. Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metall. Mater. Trans. A. 40A, 2079–2086 (2009).

    Google Scholar 

  46. Zhao, Y. H. Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scripta Mater. 59, 627–630 (2008).

    Google Scholar 

  47. Hu, H., Xu, Z., Dou, W. & Huang, F. Effect of strain rate and stress state on mechanical properties of Ti-6Al-4V alloy. Int. J. Impact Eng. 145, 103689 (2020).

    Google Scholar 

  48. Tokuda, K., Goto, K., Iihara, J. & Adachi, H. Visualization of local deformation in metallic materials through in situ X-ray diffraction mapping. Mater. Trans. 66, 50–55 (2025).

    Google Scholar 

Download references

Acknowledgements

We thank T. Hanawa, H. Hosoda, A. Holtzheid, T. Nakano, P. Wiedekehr, M. Pawelkiewicz-Koebel, H. Fujii, and M. Goto for discussion. We also thank H. Ichihara, K. Manabe, I. So, J. Li, H. Muto, and H. Ikeda for technical assistance. Synchrotron XRD measurements were conducted at BL16, SAGA-LS (project number: SEI2023C-012, SEI2024B-012). This research was supported by Japan Society for the Promotion of Science, a Grant-in-Aid for Scientific Research on the innovation area “Science of New-Class of Materials Based on Elemental Multiplicity and Heterogeneity (Grant No. 18H05452)” partially to N.N.

Funding

Open access funding provided by National Institute for Materials Science.

Author information

Author notes
  1. Norimasa Nishiyama

    Present address: Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan

Authors and Affiliations

  1. Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd., 1-1-1 Koyakita, Itami, 664-0016, Japan

    Norimasa Nishiyama, Yoshinori Tange, Keita Sasaki, Yutaka Kobayashi & Akio Fujimura

  2. Laboratory for Materials and Structures, Tokyo Institute of Technology, R3-22, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan

    Norimasa Nishiyama, Takashi Sawahata & Fumihiro Wakai

  3. Department of Mechanical Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577, Japan

    Masafumi Matsushita

  4. Analysis Technology Research Center, Sumitomo Electric Industries, Ltd., 1-1-1 Koyakita, Itami, 664-0016, Japan

    Kazuya Tokuda, Kosuke Tominaga, Takashi Sekiya & Koji Kuramochi

  5. School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, 804-8550, Japan

    Zenji Horita

  6. Magnesium Research Center, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan

    Zenji Horita

  7. Synchrotron Light Application Center, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan

    Zenji Horita

Authors
  1. Norimasa Nishiyama
    View author publications

    Search author on:PubMed Google Scholar

  2. Yoshinori Tange
    View author publications

    Search author on:PubMed Google Scholar

  3. Takashi Sawahata
    View author publications

    Search author on:PubMed Google Scholar

  4. Masafumi Matsushita
    View author publications

    Search author on:PubMed Google Scholar

  5. Kazuya Tokuda
    View author publications

    Search author on:PubMed Google Scholar

  6. Kosuke Tominaga
    View author publications

    Search author on:PubMed Google Scholar

  7. Takashi Sekiya
    View author publications

    Search author on:PubMed Google Scholar

  8. Koji Kuramochi
    View author publications

    Search author on:PubMed Google Scholar

  9. Keita Sasaki
    View author publications

    Search author on:PubMed Google Scholar

  10. Fumihiro Wakai
    View author publications

    Search author on:PubMed Google Scholar

  11. Zenji Horita
    View author publications

    Search author on:PubMed Google Scholar

  12. Yutaka Kobayashi
    View author publications

    Search author on:PubMed Google Scholar

  13. Akio Fujimura
    View author publications

    Search author on:PubMed Google Scholar

Contributions

N.N., K.S., F.W., and Z.H. designed the research. N.N., M.M., Y.K., A.F., and Z.H. led the project. N.N., Y.T., and T.Sawahata performed high-pressure synthesis. Y.T. and T.Sawahata performed XRD measurements. Y.T., T.Sawahata, and Z.H. performed tensile tests. K. Tominaga and T.Sekiya performed FESEM-EBSD measurements. K.K. performed TEM observations. N.N. and K.Tokuda performed synchrotron XRD measurements. N.N., M.M., and Z.H. wrote the manuscript with contributions from other authors.

Corresponding author

Correspondence to Norimasa Nishiyama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, N., Tange, Y., Sawahata, T. et al. High tensile strength and transformation-induced plasticity in bulk polycrystalline omega titanium. Sci Rep (2026). https://doi.org/10.1038/s41598-025-33037-z

Download citation

  • Received: 21 July 2025

  • Accepted: 15 December 2025

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41598-025-33037-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Titanium
  • ω phase
  • High-pressure and temperature
  • Tensile strength
  • Martensitic transformation
  • Transformation-induced plasticity
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing