Table 7 Performance metrics of machine learning models for glioma classification.
From: Brain tumor detection with real-world predictions in Jordan hospitals
Model | AUC | CA | F1 | Prec | Recall |
|---|---|---|---|---|---|
Tree | 0.833 | 0.882 | 0.744 | 0.747 | 0.742 |
AdaBoost | 0.834 | 0.882 | 0.745 | 0.744 | 0.746 |
kNN | 0.988 | 0.957 | 0.903 | 0.945 | 0.864 |
Neural Network | 0.995 | 0.973 | 0.94 | 0.958 | 0.923 |
Logistic Regression | 0.962 | 0.939 | 0.868 | 0.868 | 0.867 |
Random Forest | 0.961 | 0.925 | 0.836 | 0.839 | 0.833 |
SVM | 0.991 | 0.963 | 0.916 | 0.963 | 0.872 |