Table 3 Parameter settings of the bio-inspired optimization algorithms.

From: A bio-inspired swarm UAV framework integrating thermal sensing and optimization-based coordination for efficient search and rescue operations

Algorithm

Parameter name

Symbol

Value/Range

PSO

Inertia weight

\(\:\omega\:\)

0.9

Cognitive coefficient

\(\:{c}_{1}\)

1.5

Social coefficient

\(\:{c}_{2}\)

1.9

GWO

Convergence constant

\(\:a\)

Linearly decreases 2 → 0

CS

Discovery rate

\(\:\rho\:\)

0.2

Lévy flight step size

\(\:{a}_{s}\:\)

1.5

ACO

Pheromone importance

\(\:\alpha\:\)

1.0

Heuristic importance

\(\:\beta\:\)

2.0

Evaporation rate

\(\:\rho\:\)

0.5

DOA

Initial convergence factor

\(\:P{P}_{1}\)

0.10–0.15

Effective radius

\(\:{R}_{e}\)

0.25

CSA

Awareness probability

\(\:AP\)

0.1

Flight length

\(\:FL\)

2.0

GA

Crossover probability

\(\:{P}_{c}\)

0.7

Mutation probability

\(\:{P}_{m}\)

0.1

WOA

Spiral constant

\(\:b\)

1.0

Convergence constant

\(\:a\)

Linearly decreases 2 → 0

BA

Frequency range

\(\:{f}_{min},\:{f}_{max}\:\:\)

(0.0, 2.0)

Pulse rate

\(\:r\)

0.5

Loudness

\(\:A\)

1.0

ABC

Employed/onlooker ratio

 

1 : 1

Abandonment limit

 

5 trials