Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Mango peels-assisted synthesis of carbon quantum dots for potential optical sensing of diazinon
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 January 2026

Mango peels-assisted synthesis of carbon quantum dots for potential optical sensing of diazinon

  • Nor Afiqah Nor Asri1,
  • Yap Wing Fen1,2,
  • Nurul Illya Muhamad Fauzi2,
  • Nur Aqilah Kamaruzzaman1,
  • Rahayu Emilia Mohamed Khaidir3,
  • Hazwani Suhaila Hashim2,
  • Muhammad Fahmi Anuar2,
  • Muhammad Amir Zakwan Mohd Zailani2,
  • Ahmad Danish Iskandar Mohd Fadzil1,
  • Nur Nadia Amira Mahamad Basari1,
  • Mazliana Ahmad Kamarudin1 &
  • …
  • Huda Abdullah4 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Environmental sciences
  • Materials science
  • Nanoscience and technology
  • Optics and photonics

Abstract

Recently, carbon quantum dots (CQDs) have received widespread attention for their attractive properties and potential in sensing applications; however, their production often uses harmful materials and high energy. In this study, CQDs were acquired from mango peels using green hydrothermal method at 200 °C for 3, 6, 9, 12, and 15 h, using water as the solvent. The optical behavior of CQDs with different time synthesis, indicating photoluminescence (PL) emissions wavelength (441–447 nm), varying absorbance (0.80–0.99), and slight changes in optical bandgap (3.935–3.825 eV), showing synthesis time influences optical behavior. The CQDs with 3 h synthesis time were chosen to undergo structural characterization due to the most left shifted in PL emission, indicating the smallest particle size. Transmission electron microscopy analyzed that the CQDs were monodispersed with the average particle size was 3.54 nm, while energy dispersive X-ray results exhibited high carbon content of 97%. Fourier transform infrared analysis proves the formation of CQDs nanoparticles by the existence of hydroxyl, carbonyl, and carboxyl functional groups. Atomic force microscopy confirmed a root mean square roughness increased from 0.71 to 1.02 nm, indicating CQDs attachment, and the gold-CQDs thin film was later used as the surface plasmon resonance (SPR) sensing layer. The develop gold-CQDs thin film-based SPR sensor was successfully tested in diazinon concentration range from 0 to 100 nM, with a limit of detection as low as 0.01 nM and sensitivity of 0.0153º nM-1. These results indicate that the potential of mango peels-derived CQDs as sustainable nanomaterials for optical sensing applications, particularly in environmental monitoring using SPR-based technology.

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Kukreja, D., Mathew, J., Lakshmipathy, R. & Sarada, N. C. Synthesis of fluorescent carbon dots from mango peels. Int. J. ChemTech Res. 8, 61–64 (2015).

    Google Scholar 

  2. Baweja, H. & Jeet, K. Economical and green synthesis of graphene and carbon quantum dots from agricultural waste. Mater. Res. Express. 6, 0850g8 (2019).

    Google Scholar 

  3. Kasinathan, K., Samayanan, S., Marimuthu, K. & Yim, J. H. Green synthesis of multicolour fluorescence carbon quantum dots from sugarcane waste: investigation of mercury (II) ion sensing, and bio-imaging applications. Appl. Surf. Sci. 601, 154266 (2022).

    Google Scholar 

  4. Boruah, A., Saikia, M., Das, T., Goswamee, R. L. & Saikia, B. K. Blue-emitting fluorescent carbon quantum dots from waste biomass sources and their application in fluoride ion detection in water. J. Photochem. Photobiol B Biol. 209, 111940 (2020).

    Google Scholar 

  5. Tyagi, A., Tripathi, K. M., Singh, N., Choudhary, S. & Gupta, R. K. Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 6, 72423–72432 (2016).

    Google Scholar 

  6. Hua, J., Hua, P. & Qin, K. Tunable fluorescent biomass-derived carbon dots for efficient antibacterial action and bioimaging. Colloids Surf. Physicochem Eng. Asp. 680, 132672 (2024).

    Google Scholar 

  7. Ponnusamy, A. et al. Active packaging film based on chitosan/gelatin blend incorporated with mango peel carbon dots: properties and shelf life extension of minced pork. Int. J. Biol. Macromol. 288, 138692 (2025).

    Google Scholar 

  8. Sun, X., Liu, Y., Niu, N. & Chen, L. Synthesis of molecularly imprinted fluorescent probe based on biomass-derived carbon quantum dots for detection of mesotrione. Anal. Bioanal Chem. 411, 5519–5530 (2019).

    Google Scholar 

  9. Jiao, X. Y. et al. The synthesis of fluorescent carbon dots from mango peel and their multiple applications. Colloids Surf. Physicochem Eng. Asp. 577, 306–314 (2019).

    Google Scholar 

  10. Zhu, J. et al. Waste utilization of synthetic carbon quantum dots based on tea and peanut shell. J. Nanomater. 7965756 (2019).

  11. Rana, A., Yadav, K. & Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J. Clean. Prod. 272, 122880 (2020).

    Google Scholar 

  12. García-Salcedo, Á. J., Giraldo-Pinto, L. Á., Márquez-Castro, D. J. & Tirado-Mejía, L. Influence of synthesis parameters on the optical properties of carbon dots. Carbon Trends. 17, 100403 (2024).

    Google Scholar 

  13. Korkut, S., Vatanpour, V. & Koyuncu, I. Carbon-based quantum dots in fabrication and modification of membranes: a review. Sep. Purif. Technol. 326, 124876 (2023).

    Google Scholar 

  14. Cui, L., Ren, X., Wang, J. & Sun, M. Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging. Mater. Today Nano. 12, 100091 (2020).

    Google Scholar 

  15. Mmelesi, O. K., Mguni, L. L., Li, F., tang, Nkosi, B. & Liu, X. Recent development in fluorescent carbon quantum dots-based photocatalysts for water and energy applications. Mater. Sci. Semicond. Process. 181, 108661 (2024).

    Google Scholar 

  16. Liu, M., Xu, Y., Niu, F., Gooding, J. J. & Liu, J. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 141, 2657–2664 (2016).

    Google Scholar 

  17. Limosani, F. et al. Top-down n-doped carbon quantum dots for multiple purposes: heavy metal detection and intracellular fluorescence. Nanomaterials 11 (9), 2249 (2021).

    Google Scholar 

  18. Chen, Z. et al. A review of top-down strategies for the production of quantum-sized materials. Small Sci. 3, 2300086 (2023).

    Google Scholar 

  19. Malitha, M. D., Molla, M. T. H., Bashar, M. A., Chandra, D. & Ahsan, M. S. Fabrication of a reusable carbon quantum dots (CQDs) modified nanocomposite with enhanced visible light photocatalytic activity. Sci. Rep. 14, 1–18 (2024).

    Google Scholar 

  20. Nugraha, M. W., Zainal Abidin, N. H. & Sambudi, N. S. Synthesis of tungsten oxide/ amino-functionalized sugarcane bagasse derived-carbon quantum dots (WO3/N-CQDs) composites for methylene blue removal. Chemosphere 277, 130300 (2021).

    Google Scholar 

  21. Singh, H., Bamrah, A., Khatri, M. & Bhardwaj, N. One-pot hydrothermal synthesis and characterization of carbon quantum dots (CQDs). Mater. Today Proc. 28, 1891–1894 (2020).

    Google Scholar 

  22. Qurtulen et al. Elucidating the photocatalytic mechanism of biomass-derived carbon dots nanocomposite for efficient degradation of MB and CR dyes: insights into protein binding applications. Diam. Relat. Mater. 149, 111547 (2024).

    Google Scholar 

  23. Rosales, S. et al. Simultaneous detection of carbon quantum dots as tracers for interwell connectivity evaluation in a pattern with two injection wells. Nanomaterials 14, (2024).

  24. Omran, B. A., Whitehead, K. A. & Baek, K. Colloids and surfaces B: biointerfaces one-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots : applications and potential biotoxicity. Colloids Surf. B Biointerfaces. 200, 111578 (2021).

    Google Scholar 

  25. Kong, J. et al. Carbon quantum dots: properties, preparation, and applications. Molecules 29, 2002 (2024).

    Google Scholar 

  26. Omar, N. A. S. et al. A review on carbon dots: synthesis, characterization and its application in optical sensor for environmental monitoring. Nanomaterials 12, 2365 (2022).

    Google Scholar 

  27. Banihashem, S. M., Moradi, A., Evazzadeh, B., Namvar, F. & Fang, Z. N. Biogenically synthesized nanoparticles in wastewater treatment; a greener approach: a review. Clean. Technol. Environ. Policy. 26, 1731–1754 (2024).

    Google Scholar 

  28. Ghosh, B. & Shirahata, N. Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Sci. Technol. Adv. Mater. 15, 014207 (2014).

    Google Scholar 

  29. Ganguly, S., Das, P., Banerjee, S. & Das, N. C. Advancement in science and technology of carbon dot-polymer hybrid composites: A review. Funct Compos. Struct 1, 022001 (2019).

  30. Manikandan, V. & Lee, N. Y. Green synthesis of carbon quantum dots and their environmental applications. Environ. Res. 212, 113283 (2022).

    Google Scholar 

  31. Saini, S. et al. Sustainable synthesis of biomass-derived carbon quantum dots and their catalytic application for the assessment of α,β-unsaturated compounds. RSC Adv. 12, 32619–32629 (2022).

    Google Scholar 

  32. Jain, S., Sahu, N., Bhatia, D. & Yadav, P. Cellular uptake and viability switching in the properties of lipid coated carbon quantum dots for potential bioimaging and therapeutics. Nanoscale Adv. 6, 5069–5079 (2024).

    Google Scholar 

  33. Pramanik, A. et al. Designing highly crystalline multifunctional multicolor-luminescence nanosystem for tracking breast cancer heterogeneity. Nanoscale Adv. 1, 1021–1034 (2019).

    Google Scholar 

  34. Singh, J. et al. Highly fluorescent carbon dots derived from mangifera indica leaves for selective detection of metal ions. Sci. Total Environ. 720, 137604 (2020).

    Google Scholar 

  35. Tafreshi, F. A., Fatahi, Z., Ghasemi, S. F., Taherian, A. & Esfandiari, N. Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLoS One. 15, 1–17 (2020).

    Google Scholar 

  36. Shekarbeygi, Z., Farhadian, N., Khani, S., Moradi, S. & Shahlaei, M. The effects of rose pigments extracted by different methods on the optical properties of carbon quantum dots and its efficacy in the determination of diazinon. Microchem J. 158, 105232 (2020).

    Google Scholar 

  37. Zahirifar, F., Rahimnejad, M., Abdulkareem, R. A. & Najafpour, G. Determination of diazinon in fruit samples using electrochemical sensor based on carbon nanotubes modified carbon paste electrode. Biocatal. Agric. Biotechnol. 20, 101245 (2019).

    Google Scholar 

  38. Phuc, H. et al. Enhancement of carbon quantum dot luminescence efficiency through N, S co – doping for rapid ion ­ Fe3+ detection. Opt. Quantum Electron. 57, 1–20 (2025).

    Google Scholar 

  39. Anas, N. A. A. et al. Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion. Opt. Laser Technol. 120, 105724 (2019).

    Google Scholar 

  40. Omar, N. A. S. et al. Quantitative and selective surface plasmon resonance response based on a reduced graphene oxide–polyamidoamine nanocomposite for detection of dengue virus E-proteins. Nanomaterials 10, 569 (2020).

    Google Scholar 

  41. Eddin, F. B. K., Fen, Y. W., Omar, N. A. S., Liew, J. Y. C. & Daniyal, W. M. E. M. M. Femtomolar detection of dopamine using surface plasmon resonance sensor based on chitosan/graphene quantum dots thin film. Spectrochim Acta - Part. Mol. Biomol. Spectrosc. 263, 120202 (2021).

    Google Scholar 

  42. Park, J. H., Cho, Y. W. & Kim, T. H. Recent advances in surface plasmon resonance sensors for sensitive optical detection of pathogens. Biosensors 12, 180 (2022).

    Google Scholar 

  43. Yin, C. et al. Turn-on fluorescent inner filter effect-based B,S,N co-doped carbon quantum dots and vanadium oxide nanoribbons for α-glucosidase activity detection. Microchem J. 178, 107405 (2022).

    Google Scholar 

  44. Tang, Y., Zeng, X. & Liang, J. Surface plasmon resonance: an introduction to a surface spectroscopy technique. J. Chem. Educ. 87, 742–746 (2010).

    Google Scholar 

  45. Kumar, N. & Khangwal, I. Functional attributes and bio-prospects of fruit peel waste. Foods Raw Mater. 14, 84–103 (2026).

    Google Scholar 

  46. Saleviter, S. et al. Design and analysis of surface plasmon resonance optical sensor for determining cobalt ion based on chitosan-graphene oxide decorated quantum dots-modified gold active layer. Opt. Express. 27, 32294 (2019).

    Google Scholar 

  47. Daniyal, W. M. E. M. M. et al. Enhancing the sensitivity of a surface plasmon resonance-based optical sensor for zinc ion detection by the modification of a gold thin film. RSC Adv. 9, 41729–41736 (2019).

    Google Scholar 

  48. Daniyal, W. M. E. M. M., Fen, Y. W., Abdullah, J., Sadrolhosseini, A. R. & Mahdi, M. A. Design and optimization of surface plasmon resonance spectroscopy for optical constant characterization and potential sensing application: theoretical and experimental approaches. Photonics 8, 361 (2021).

    Google Scholar 

  49. Hashim, H. S. et al. Surface plasmon resonance sensor based on gold-graphene quantum dots thin film as a sensing nanomatrix for phenol detection. Opt. Laser Technol. 168, 109816 (2024).

    Google Scholar 

  50. Yang, G. & Kang, S. Detection of multi-class pesticide residues using surface plasmon resonance based on polyclonal antibody. Food Sci. Biotechnol. 17 (3), 547–552 (2008).

    Google Scholar 

  51. Shrivas, K. et al. Silver nanoparticles for selective detection of phosphorus pesticide containing π-conjugated pyrimidine nitrogen and sulfur moieties through non-covalent interactions. J. Mol. Liq. 275, 297–303 (2019).

    Google Scholar 

  52. Satnami, M. L. et al. Gold nanoprobe for inhibition and reactivation of acetylcholinesterase: an application to detection of organophosphorus pesticides. Sens. Actuators B Chem. 267, 155–164 (2018).

    Google Scholar 

  53. Sousa, H. B. A., Martins, C. S. M. & Prior, J. A. V. You don’t learn that in school: an updated practical guide to carbon quantum dots. Nanomaterials 11, 1–88 (2021).

    Google Scholar 

  54. Afifah, N. et al. Localized surface plasmon resonance decorated with carbon quantum dots and triangular ag nanoparticles for chlorophyll detection. Nanomaterials 12, 35 (2022).

    Google Scholar 

  55.  Eddin, F. B. K. et al. Simultaneous measurement of the refractive index and thickness of graphene oxide/gold multilayered structure for potential in dopamine sensing using surface plasmon resonance spectroscopy. Optik (Stuttg). 278, 170703 (2023).

    Google Scholar 

  56. Dhariwal, J., Rao, G. K. & Vaya, D. Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring. RSC Sustain. 2, 11–36 (2023).

    Google Scholar 

  57. Tong, Y. J. et al. High-quality full-color carbon quantum dots synthesized under an unprecedentedly mild condition. iScience 25, 6 (2022).

    Google Scholar 

  58. Thakur, S. et al. Synthesis of hydrothermal-assisted papaya peel-derived carbon quantum dots impregnated carboxymethyl cellulose and pectin crosslinked nanohydrogel for shelf-life enhancement of strawberry. Int. J. Biol. Macromol. 283, 137591 (2024).

    Google Scholar 

  59. Abd Elhaleem, S. M., Belal, F., El-Shabrawy, Y. & El-Maghrabey, M. Self-ratiometric fluorescence approach based on room-temperature instantaneously synthesized carbon dots from folin’s reagent and ethanolamine for determination of nitroxinil in water, milk, and food samples. Anal. Chim. Acta. 1323, 343061 (2024).

    Google Scholar 

  60. Ishak, N., Galář, P., Mekkat, R., Grandcolas, M. & Šoóš, M. Fine-tuning photoluminescence and photocatalysis: exploring the effects of carbon quantum dots synthesis and purification on g-C3N4. Colloids Surf. Physicochem Eng. Asp. 706, 135789 (2025).

    Google Scholar 

  61. Wang, W., Damm, C., Walter, J., Nacken, T. J. & Peukert, W. Photobleaching and stabilization of carbon nanodots produced by solvothermal synthesis. Phys. Chem. Chem. Phys. 18, 466–475 (2016).

    Google Scholar 

  62. Thyda, L. et al. Green synthesis of carbon quantum dots derived from mango-leaves (M – CQDs): M – CQDs/ZnO nanorods heterostructure thin films for efficient self-powered UV photodetector applications. Appl. Surf. Sci. 685, 162032 (2025).

    Google Scholar 

  63. Dua, S. et al. Stability of carbon quantum dots: a critical review. RSC Adv. 13, 13845–13861 (2023).

    Google Scholar 

  64. Chen, K., Zhang, M., Bhandari, B. & Deng, D. 3D printed cinnamon essential oil/banana peel carbon dots loaded corn starch/gelatin bilayer film with enhanced functionality for food packaging application. Food Chem. 448, 139176 (2024).

    Google Scholar 

  65. Guo, H. et al. Machine learning-guided realization of full-color high-quantum-yield carbon quantum dots. Nat. Commun. 15, 1–10 (2024).

    Google Scholar 

  66. Mohanaraman, S. P. & Chidambaram, R. A holistic review on red fluorescent graphene quantum dots, its synthesis, unique properties with emphasis on biomedical applications. Heliyon 10, e35760 (2024).

    Google Scholar 

  67. Watcharamongkol, T., Khaopueak, P., Seesuea, C. & Wechakorn, K. Green hydrothermal synthesis of multifunctional carbon dots from cassava pulps for metal sensing, antioxidant, and mercury detoxification in plants. Carbon Resour. Convers. 7, 100206 (2024).

    Google Scholar 

  68. Wang, S., Chen, Z. G., Cole, I. & Li, Q. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon N Y. 82, 304–313 (2015).

    Google Scholar 

  69. Ren, H., Qi, F., Feng, X., Liu, J. & Zhao, Y. Facile synthesis of fluorescent carbon quantum dots with high product yield using a solid-phase strategy. Molecules 29, 1–12 (2024).

    Google Scholar 

  70. Papaioannou, N., Titirici, M. M. & Sapelkin, A. Investigating the effect of reaction time on carbon dot formation, structure, and optical properties. ACS Omega. 4, 21658–21665 (2019).

    Google Scholar 

  71. Sk, M. A., Ananthanarayanan, A., Huang, L., Lim, K. H. & Chen, P. Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C. 2, 6954–6960 (2014).

    Google Scholar 

  72. Wei, J. & Qiu, J. Unveil the fluorescence of carbon quantum dots. Adv. Eng. Mater. 17, 132–142 (2015).

    Google Scholar 

  73. Issa, M. A. et al. Fluorescent recognition of Fe3+ in acidic environment by enhanced-quantum yield N-doped carbon dots: optimization of variables using central composite design. Sci. Rep. 10, 1–18 (2020).

    Google Scholar 

  74. Barati, A., Shamsipur, M., Arkan, E., Hosseinzadeh, L. & Abdollahi, H. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology. Mater. Sci. Eng. C. 47, 325–332 (2015).

    Google Scholar 

  75. Costa, J. C. S., Taveira, R. J. S., Lima, C. F. R. A. C., Mendes, A. & Santos, L. M. N. B. F. Optical band gaps of organic semiconductor materials. Opt. Mater. (Amst). 58, 51–60 (2016).

    Google Scholar 

  76. Fouad, M. M., Shihata, L. A. & Morgan, E. S. I. An integrated review of factors influencing the performance of photovoltaic panels. Renew. Sustain. Energy Rev. 80, 1499–1511 (2017).

    Google Scholar 

  77. Ateia, E. E., Rabie, O. & Mohamed, A. T. Assessment of the correlation between optical properties and CQD preparation approaches. Eur. Phys. J. Plus. 139, 24 (2024).

    Google Scholar 

  78. Nugraha, M. W., Sambudi, N. S., Kasmiarno, L. D. & Kamal, N. A. The effect of amino-functionalization on photoluminescence properties of sugarcane bagasse-derived carbon quantum dots. ASEAN J. Chem. Eng. 21, 62–72 (2021).

    Google Scholar 

  79. Tuerhong, M., Yang, X. U., & Xue-Bo, Y. I. N. Review on carbon dots and their applications. Chin. J. Anal. Chem. 45, 139–150 (2017).

    Google Scholar 

  80. Manjubaashini, N., Bargavi, P. & Balakumar, S. Carbon quantum dots derived from agro waste biomass for pioneering bioanalysis and in vivo bioimaging. J. Photochem. Photobiol Chem. 454, 115702 (2024).

    Google Scholar 

  81. Surendran, P. et al. Fluorescent carbon quantum dots from Ananas comosus waste peels: a promising material for NLO behaviour, antibacterial, and antioxidant activities. Inorg. Chem. Commun. 124, 108397 (2021).

    Google Scholar 

  82. Ang, W. L. et al. Microwave-assisted conversion of palm kernel shell biomass waste to photoluminescent carbon dots. Sci. Rep. 10, 1–15 (2020).

    Google Scholar 

  83. Scimeca, M., Bischetti, S., Lamsira, H. K., Bonfiglio, R. & Bonanno, E. Energy dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur. J. Histochem. 62, 89–99 (2018).

    Google Scholar 

  84. Ding, H. et al. Surface states of carbon dots and their influences on luminescence. J. Appl. Phys. 127, 231101 (2020).

    Google Scholar 

  85. Amloy, S., Lukprang, T., Lertworapreecha, M. & Preechaburana, P. Green synthesis of carbon dots from mangosteen peel for fluorescent cancer cells. J. Met. Mater. Min. 34, 1–8 (2024).

    Google Scholar 

  86. Kamal, A. & Hong, S. Carbon quantum dots: synthesis, characteristics, and quenching as biocompatible fluorescent probes. Biosensor 15 (99), 1–19 (2025).

    Google Scholar 

  87. Sachdev, A., Matai, I. & Gopinath, P. Implications of surface passivation on physicochemical and bioimaging properties of carbon dots. RSC Adv. 4, 20915–20921 (2014).

    Google Scholar 

  88. Eskalen, H., Uruş, S., Kavgacı, M., Kalmış, H. V. & Tahta, B. Carbon quantum dots derived from pomegranate peel: highly effective fe(III) sensor. Biomass Convers. Biorefinery. 14, 1201–1214 (2024).

    Google Scholar 

  89. Khaledian, S. et al. Rapid detection of diazinon as an organophosphorus poison in real samples using fluorescence carbon dots. Inorg. Chem. Commun. 130, 108676 (2021).

    Google Scholar 

  90. Sundaraganesan, N., Ilakiamani, S., Saleem, H. & Mohan, S. FT-Raman, FTIR spectra and normal coordinate analysis of 5-bromo-2-nitropyridine. Indian J. Pure Appl. Phys. 42, 585–590 (2004).

    Google Scholar 

  91. Nazar, M., Hasan, M., Wirjosentono, B., Gani, B. A. & Nada, C. E. Microwave synthesis of carbon quantum dots from Arabica coffee ground for fluorescence detection of Fe3+, Pb2+, and Cr3+. ACS Omega. 9, 20571–20581 (2024).

    Google Scholar 

  92. Prekodravac, J. et al. Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications. Ceram. Int. 45, 17006–17013 (2019).

    Google Scholar 

  93. Marković, Z. M. et al. Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. Beilstein J. Nanotechnol. 14, 165–174 (2023).

    Google Scholar 

  94. Atchudan, R. et al. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Phys. E Low-Dimensional Syst. Nanostruct. 126, 114417 (2021).

    Google Scholar 

  95. Yang, Z., Liu, C., Gao, Y., Wang, J., & Yang, W. Influence of surface roughness on surface plasmon resonance phenomenon of gold film. Chin. Opt. Lett. 14, 042401–042403 (2015).

    Google Scholar 

  96. Eddin, F. B. K. et al. Direct and sensitive detection of dopamine using carbon quantum dots based refractive index surface plasmon resonance sensor. Nanomaterials 12, 1799 (2022).

    Google Scholar 

  97. Fauzi, N. I. M., Fen, Y. W., Omar, N. A. S., & Hashim, H. S. Recent advances on detection of insecticides using optical sensors. Sensors 21, 3856 (2021).

    Google Scholar 

  98. Nasr, N. et al. A two-fold SPR-SERS sensor utilizing gold nanoparticles and graphene thin membrane as a spacer in a 3D composite structure. Spectrochim Acta - Part. Mol. Biomol. Spectrosc. 304, 123331 (2024).

    Google Scholar 

  99. Tseng, W., Bin, Hsieh, M. M., Chen, C. H., Chiu, T. C. & Tseng, W. L. Functionalized gold nanoparticles for sensing of pesticides: a review. J. Food Drug Anal. 28, 521–538 (2020).

    Google Scholar 

  100. Mauriz, E. Recent progress in plasmonic biosensing schemes for virus detection. Sens. 20, 4745 (2020).

    Google Scholar 

  101. Wu, X. et al. Environmental occurrence, toxicity concerns, and degradation of diazinon using a microbial system. Front. Microbiol. 12, 717286 (2021).

    Google Scholar 

  102. Bilal, S., Sami, A. J., Hayat, A., & Ur Rehman, M. F. Assessment of pesticide induced Inhibition of apis mellifera (honeybee) acetylcholinesterase by means of N-doped carbon dots/BSA nanocomposite modified electrochemical biosensor. Bioelectrochemistry 144, 107999 (2022).

    Google Scholar 

  103. Baharum, N. A. et al. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar. Arab. J. Chem. 13, 6106–6121 (2020).

    Google Scholar 

  104. Hashim, H. S., Fen, Y. W., Omar, N. A. S. & Fauzi, N. I. M. Sensing methods for hazardous phenolic compounds based on graphene and conducting polymers-based materials. Chemosensors 9, 1–40 (2021).

    Google Scholar 

  105. Bahamon-Pinzon, D., Moreira, G., Obare, S. & Vanegas, D. Development of a nanocopper-decorated laser-scribed sensor for organophosphorus pesticide monitoring in aqueous samples. Microchim. Acta. 189, 254 (2022).

    Google Scholar 

  106. Zhang, C., Qiu, M., Wang, J. & Liu, Y. Recent advances in nanoparticle-based optical sensors for detection of pesticide residues in soil. Biosensors 13, 1–30 (2023).

    Google Scholar 

  107. Amirjani, A., Bagheri, M., Heydari, M. & Hesaraki, S. Colorimetric determination of timolol concentration based on localized surface plasmon resonance of silver nanoparticles. Nanotechnology 27, 1811–1820 (2016).

    Google Scholar 

  108. Zehani, N., Dzyadevych, S. V. & Kherrat, R. Jaffrezic-Renault, N. J. Sensitive impedimetric biosensor for direct detection of diazinon based on lipases. Front. Chem. 2, 1–7 (2014).

    Google Scholar 

  109. Tan, J. et al. Enhanced photoelectric conversion efficiency: a novel h-BN based self-powered photoelectrochemical aptasensor for ultrasensitive detection of diazinon. Biosens. Bioelectron. 142, 111546 (2019).

    Google Scholar 

Download references

Acknowledgements

This research was funded by Universiti Putra Malaysia through Putra Grant (GPB/2024/9810900).

Funding

This research was funded by Universiti Putra Malaysia through Putra Grant (GPB/2024/9810900).

Author information

Authors and Affiliations

  1. Department of Physics Faculty of Science , Universiti Putra Malaysia , 43400 UPM, Serdang, Selangor, Malaysia

    Nor Afiqah Nor Asri, Yap Wing Fen, Nur Aqilah Kamaruzzaman, Ahmad Danish Iskandar Mohd Fadzil, Nur Nadia Amira Mahamad Basari & Mazliana Ahmad Kamarudin

  2. Institute of Nanoscience and Nanotechnology Functional Nanotechnology Devices Laboratory , Universiti Putra Malaysia , 43400 UPM, Serdang, Selangor, Malaysia

    Yap Wing Fen, Nurul Illya Muhamad Fauzi, Hazwani Suhaila Hashim, Muhammad Fahmi Anuar & Muhammad Amir Zakwan Mohd Zailani

  3. Faculty of Applied Sciences , Universiti Teknologi MARA Cawangan Sarawak , Kota Samarahan, Sarawak, 94300, Malaysia

    Rahayu Emilia Mohamed Khaidir

  4. Department of Electrical Electronic and System Engineering Faculty of Engineering and Built Environment , Universiti Kebangsaan Malaysia , Bangi, 43600, Malaysia

    Huda Abdullah

Authors
  1. Nor Afiqah Nor Asri
    View author publications

    Search author on:PubMed Google Scholar

  2. Yap Wing Fen
    View author publications

    Search author on:PubMed Google Scholar

  3. Nurul Illya Muhamad Fauzi
    View author publications

    Search author on:PubMed Google Scholar

  4. Nur Aqilah Kamaruzzaman
    View author publications

    Search author on:PubMed Google Scholar

  5. Rahayu Emilia Mohamed Khaidir
    View author publications

    Search author on:PubMed Google Scholar

  6. Hazwani Suhaila Hashim
    View author publications

    Search author on:PubMed Google Scholar

  7. Muhammad Fahmi Anuar
    View author publications

    Search author on:PubMed Google Scholar

  8. Muhammad Amir Zakwan Mohd Zailani
    View author publications

    Search author on:PubMed Google Scholar

  9. Ahmad Danish Iskandar Mohd Fadzil
    View author publications

    Search author on:PubMed Google Scholar

  10. Nur Nadia Amira Mahamad Basari
    View author publications

    Search author on:PubMed Google Scholar

  11. Mazliana Ahmad Kamarudin
    View author publications

    Search author on:PubMed Google Scholar

  12. Huda Abdullah
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft, Writing – review & editing (Nor Afiqah Nor Asri); Conceptualization, Validation, Visualization, Data curation, Writing – review & editing, Resources, Supervision, Project administration, Funding acquisition (Yap Wing Fen); Validation, Visualization, Data curation (Nurul Illya Muhamad Fauzi); Visualization, Resources (Nur Aqilah Kamaruzzaman); Validation, Resources (Rahayu Emilia Mohamed Khaidir and Hazwani Suhaila Hashim); Software (Muhammad Fahmi Anuar and Muhammad Amir Zakwan Mohd Zailani); Visualization (Ahmad Danish Iskandar Mohd Fadzil and Nur Nadia Amira Mahamad Basari); Supervision (Mazliana Ahmad Kamarudin); Methodology and Data curation (Huda Abdullah).

Corresponding author

Correspondence to Yap Wing Fen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asri, N.A.N., Fen, Y.W., Fauzi, N.I.M. et al. Mango peels-assisted synthesis of carbon quantum dots for potential optical sensing of diazinon. Sci Rep (2026). https://doi.org/10.1038/s41598-025-33228-8

Download citation

  • Received: 15 August 2025

  • Accepted: 17 December 2025

  • Published: 31 January 2026

  • DOI: https://doi.org/10.1038/s41598-025-33228-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Mango peels
  • Carbon quantum dots
  • Green synthesis
  • Diazinon
  • Surface plasmon resonance
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing