Table 7 Regularization-Based ablation study for deep learning Architectures.

From: An IoT-enabled AI framework for sustainable product design optimizing eco-efficiency using BiLSTM

Model Variant

Accuracy (%)

Precision (%)

F1-Score (%)

AUC

MCC

Energy (kWh)

CNN (Full)

92.3

91.5

91.4

0.940

0.85

16.5

CNN (No Dropout)

89.7

88.4

88.1

0.912

0.81

17.9

LSTM (Full)

91.5

90.3

91.2

0.941

0.88

14.3

LSTM (No Dropout)

88.9

87.1

87.6

0.914

0.83

15.6

RNN (Full)

88.4

87.0

86.8

0.905

0.82

15.1

RNN (No Dropout)

85.6

83.9

84.2

0.876

0.77

16.4

GRU (Full)

90.1

88.7

89.8

0.929

0.86

13.7

GRU (No Dropout)

87.6

85.9

86.1

0.901

0.81

15.0

BiLSTM (Full)

97.6

96.2

96.1

0.980

0.93

12.5

BiLSTM (No Dropout)

95.1

93.8

93.4

0.955

0.89

13.9