Table 5 Model accuracy and comparison.
LR | NB | RF | DT | SVM | KNN | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | Fail | Pass | Fail | Pass | Fail | Pass | Fail | Pass | Fail | Pass | Fail | Pass |
Fail | 2349 | 322 | 2656 | 15 | 2322 | 349 | 2285 | 386 | 2545 | 126 | 2598 | 73 |
Pass | 541 | 978 | 40 | 1479 | 516 | 1003 | 532 | 987 | 1118 | 401 | 751 | 768 |
% | ||||||||||||
Accuracy | 0.794 | 0.986 | 0.793 | 0.780 | 0.703 | 0.803 | ||||||
Sensitivity | 0.812 | 0.985 | 0.818 | 0.811 | 0.694 | 0.775 | ||||||
Specificity | 0.752 | 0.990 | 0.741 | 0.718 | 0.760 | 0.913 | ||||||
Pos pred value | 0.879 | 0.994 | 0.869 | 0.855 | 0.952 | 0.972 | ||||||
Neg pred value | 0.643 | 0.973 | 0.660 | 0.649 | 0.264 | 0.505 | ||||||
Prevalence | 0.689 | 0.643 | 0.677 | 0.672 | 0.874 | 0.799 | ||||||
Detection rate | 0.560 | 0.633 | 0.554 | 0.545 | 0.607 | 0.620 | ||||||
Detection prevalence | 0.637 | 0.637 | 0.637 | 0.637 | 0.637 | 0.637 | ||||||
Balanced accuracy | 0.782 | 0.987 | 0.780 | 0.765 | 0.727 | 0.844 | ||||||
AUC | 0.856 | 0.999 | 0.856 | 0.806 | 0.745 | 0.868 |