Table 7 Comparison of multiple regression and SCS methods across different return Periods.

From: Evaluating machine learning efficiency and accuracy for real time flash flood mapping

Method

T2

T5

T10

T25

T50

T100

T200

Durbin-Watson

Regression

1.74

1.99

2.136

2.383

2.565

2.678

SCS

1.418

1.335

1.433

1.691

1.846

1.898

Coefficient of determination

Regression

0.768

0.758

0.735

0.679

0.609

0.517

SCS

0.363

0.25

0.212

0.194

0.198

0.179

RMSE

Regression

17.882

38.035

57.64

100.789

154.699

248.699

SCS

63.06

63.261

116.337

129.912

190.215

287.446

Nash-sutcliffe

Regression

0.758

0.742

0.733

0.671

0.608

0.516

SCS

−2.005

0.287

−0.087

−0.454

−0.408

−0.353

  1. *T return period.