Table 3 Selected optimal hyperparameters for different ML models.

From: Machine learning approach for prediction of TBM performance and risk of jamming in Himalayan geology using a cross-project tunnelling database

Regression model

Hyperparameters

Search space

Optimized hyperparameters

1. Bagging

n_estimators

10–300, step = 10

100

max_samples

0.1–1.1, step = 0.1

0.5

max_features

0.1–1.1, step = 0.1

1

2. RF

n_estimators

10–300, step = 10

200

max_depth

5–50, step = 5

30

max_features

‘sqrt’, ‘log2’

‘log2’

min_samples_leaf

1–10, step = 1

1

min_samples_split

1–10, step = 1

5

3. XGBoost

n_estimators

10–300, step = 10

100

max_depth

1–10, step = 1

7

learning_rate

0.01–0.3, setp = 0.05

0.1

gamma

0–10, step = 1

5

subsample

0.1–1.0.1.0, step = 0.1

0.8

colsample_bytree

0.1–1.0.1.0, step = 0.1

1

4. ANN

Hidden layer

Hidden layer number

1–5

1

Neurons per layer

32–512, step = 32

352

Activation function

‘ReLU’, ‘tanh’, ‘sigmoid’, ‘linear’

‘ReLU’

Kernel initializer

‘uniform’, ‘glorot_uniform’, ‘he_normal’

‘glorot_uniform’

Output layer

Kernel initializer

‘uniform’, ‘glorot_uniform’, ‘he_normal’

‘he_normal’

Activation function

‘linear’

‘linear’