Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
A multiobjective human evolutionary optimization algorithm for complex engineering problems
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

A multiobjective human evolutionary optimization algorithm for complex engineering problems

  • D. Tarunika1 na1 &
  • Ashish Sharma1 na1 

Scientific Reports , Article number:  (2026) Cite this article

  • 748 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Mathematics and computing

Abstract

Multi-objective optimization problems (MOPs) demand algorithms that effectively balance convergence, diversity, and computational efficiency. To address this challenge, a novel Multi-Objective Human Evolutionary Optimization Algorithm (MOHEOA) is proposed, inspired by the dynamics of human societal evolution. MOHEOA structures the search process into two adaptive phases: human exploration and human development, integrating a fixed-size dynamic archive to maintain and utilize non-dominated Pareto solutions. The algorithm begins with a logistic chaos mapping for population initialization, ensuring robust diversity. During the development phase, individuals are classified into leaders, explorers, followers, and losers, each employing specialized strategies tailored for multi-objective search. A roulette-wheel selection mechanism dynamically selects leaders from the archive, optimizing the trade-off between exploration and exploitation. To validate MOHEOA’s performance, extensive experiments on twenty-three benchmark test functions and four real-world engineering design problems are conducted. Comparative evaluations against state-of-the-art multi-objective algorithms demonstrate that MOHEOA consistently outperforms competitors in convergence speed, solution diversity, and Pareto optimality. The algorithm’s robustness and adaptability make it a compelling choice for complex optimization tasks. For reproducibility and further research, the MATLAB implementation of MOHEOA is publicly available at: https://github.com/swatzash/MOHEOA.

Data availability

The Code and datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Holland, J. H. Genetic algorithms. Sci. Am.267, 66–73 (1992).

    Google Scholar 

  2. Storn, R. & Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optimization11, 341–359 (1997).

    Google Scholar 

  3. Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks, vol. 4, 1942–1948 (ieee, 1995).

  4. Abualigah, L. et al. Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng.157, 107250 (2021).

    Google Scholar 

  5. Rashedi, E., Nezamabadi-Pour, H. & Saryazdi, S. Gsa: A gravitational search algorithm. Inform. Sci.179, 2232–2248 (2009).

    Google Scholar 

  6. Pereira, J. L. J. et al. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl.170, 114522 (2021).

    Google Scholar 

  7. Askari, Q., Younas, I. & Saeed, M. Political optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl.-Based Syst.195, 105709 (2020).

    Google Scholar 

  8. Lian, J. & Hui, G. Human evolutionary optimization algorithm. Expert Syst. Appl.241, 122638 (2024).

    Google Scholar 

  9. Pashaei, E. & Pashaei, E. An efficient binary chimp optimization algorithm for feature selection in biomedical data classification. Neural Comput. Appl.34, 6427–6451 (2022).

    Google Scholar 

  10. Gupta, R., Nanda, S. J. & Shukla, U. P. Cloud detection in satellite images using multi-objective social spider optimization. Appl. Soft Comput.79, 203–226 (2019).

    Google Scholar 

  11. Sharma, A. & Nanda, S. J. Memory guided aquila optimization algorithm with controlled search mechanism for seismicity analysis of earthquake prone regions. Appl. Soft Comput.148, 110894 (2023).

    Google Scholar 

  12. Deb, K. Nonlinear goal programming using multi-objective genetic algorithms. J. Oper. Res. Society52, 291–302 (2001).

    Google Scholar 

  13. Zitzler, E., Deb, K. & Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolution. Comput.8, 173–195 (2000).

    Google Scholar 

  14. Dhiman, G. et al. Mosoa: A new multi-objective seagull optimization algorithm. Expert Syst. Appl.167, 114150 (2021).

    Google Scholar 

  15. Coello, C. A. C. Evolutionary Algorithms for Solving Multi-Objective Problems (Springer, 2007).

  16. Nagy, M. et al. Multi-objective optimization methods as a decision making strategy. Int. J. Eng. Res. Technol.9, 516–522 (2020).

    Google Scholar 

  17. Cho, J.-H., Wang, Y., Chen, R., Chan, K. S. & Swami, A. A survey on modeling and optimizing multi-objective systems. IEEE Commun. Surveys Tutorials19, 1867–1901 (2017).

    Google Scholar 

  18. Petchrompo, S., Coit, D. W., Brintrup, A., Wannakrairot, A. & Parlikad, A. K. A review of pareto pruning methods for multi-objective optimization. Comput. Ind. Eng.167, 108022 (2022).

    Google Scholar 

  19. Yang, L. et al. A many-objective evolutionary algorithm based on interaction force and hybrid optimization mechanism. Swarm Evolution. Comput.90, 101667 (2024).

    Google Scholar 

  20. Gutjahr, W. J. & Pichler, A. Stochastic multi-objective optimization: A survey on non-scalarizing methods. Ann. Operations Res.236, 475–499 (2016).

    Google Scholar 

  21. Liu, Z.-F. et al. Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach. Energy235, 121407 (2021).

    Google Scholar 

  22. Guo, K. & Zhang, L. Multi-objective optimization for improved project management: Current status and future directions. Automat. Construct.139, 104256 (2022).

    Google Scholar 

  23. Pereira, J. L. J., Oliver, G. A., Francisco, M. B., Cunha, S. S. Jr. & Gomes, G. F. A review of multi-objective optimization: Methods and algorithms in mechanical engineering problems. Arch. Comput. Methods Eng.29, 2285–2308 (2022).

    Google Scholar 

  24. Rostami, M. et al. Gene selection for microarray data classification via multi-objective graph theoretic-based method. Artif. Intell. Med.123, 102228 (2022).

    Google Scholar 

  25. Deng, X., Li, M., Deng, S. & Wang, L. Hybrid gene selection approach using xgboost and multi-objective genetic algorithm for cancer classification. Med. Biol. Eng. Comput.60, 663–681 (2022).

    Google Scholar 

  26. Wei, W. et al. Multi-objective optimization for resource allocation in vehicular cloud computing networks. IEEE Trans. Intell. Transport. Syst.23, 25536–25545 (2021).

    Google Scholar 

  27. Khodadadi, N., Abualigah, L., El-Kenawy, E.-S.M., Snasel, V. & Mirjalili, S. An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems. IEEE Access10, 106673–106698 (2022).

    Google Scholar 

  28. Bessedik, M. et al. An efficient hybrid multi-objective memetic algorithm for the frequency assignment problem. Eng. Appl. Artif. Intell.87, 103265 (2020).

    Google Scholar 

  29. Premkumar, M., Jangir, P., Kumar, B. S., Alqudah, M. A. & Nisar, K. S. Multi-objective grey wolf optimization algorithm for solving real-world bldc motor design problem. Comput. Mater. Continua. 70 (2022).

  30. Jin, R., Rocco, P. & Geng, Y. Cartesian trajectory planning of space robots using a multi-objective optimization. Aerosp. Sci. Technol.108, 106360 (2021).

    Google Scholar 

  31. Weiszer, M., Burke, E. K. & Chen, J. Multi-objective routing and scheduling for airport ground movement. Transport. Res. Part C Emerg. Technol.119, 102734 (2020).

    Google Scholar 

  32. Piri, J. & Mohapatra, P. An analytical study of modified multi-objective harris hawk optimizer towards medical data feature selection. Comput. Biol. Med.135, 104558 (2021).

    Google Scholar 

  33. Yang, X.-S. Nature-Inspired Optimization Algorithms. (Academic Press, 2020).

  34. Deb, K., Thiele, L., Laumanns, M. & Zitzler, E. Scalable multi-objective optimization test problems. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 1, 825–830 (IEEE, 2002).

  35. Zhang, Q. et al. Multiobjective optimization test instances for the cec 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report264, 1–30 (2008).

  36. Tian, Y., Cheng, R., Zhang, X., Li, M. & Jin, Y. Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems [research frontier]. IEEE Comput. Intell. Magaz.14, 61–74 (2019).

    Google Scholar 

  37. Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evolut. Comput.1, 67–82 (1997).

    Google Scholar 

  38. Coello, C. C. & Lechuga, M. S. Mopso: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 2, 1051–1056 (IEEE, 2002).

  39. Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evolut. Comput.6, 182–197 (2002).

    Google Scholar 

  40. Zitzler, E., Laumanns, M. & Thiele, L. Spea2: Improving the strength pareto evolutionary algorithm (2001).

  41. Zhang, Q. & Li, H. Moea/d: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evolut. Comput.11, 712–731 (2007).

    Google Scholar 

  42. Sharma, A. & Nanda, S. J. A multi-objective chimp optimization algorithm for seismicity de-clustering. Appl. Soft Comput.121, 108742 (2022).

    Google Scholar 

  43. Coello, C. C. Evolutionary multi-objective optimization: A historical view of the field. IEEE Comput. Intell. Magaz.1, 28–36 (2006).

    Google Scholar 

  44. Das, I. & Dennis, J. E. Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optimization8, 631–657 (1998).

    Google Scholar 

  45. Kim, I. Y. & De Weck, O. L. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Struct. Multidiscip. Optimization29, 149–158 (2005).

    Google Scholar 

  46. Kim, I. Y. & de Weck, O. L. Adaptive weighted sum method for multiobjective optimization: A new method for pareto front generation. Struct. Multidiscip. Optimization31, 105–116 (2006).

    Google Scholar 

  47. Angus, D. & Woodward, C. Multiple objective ant colony optimisation. Swarm Intell.3, 69–85 (2009).

    Google Scholar 

  48. Mirjalili, S., Saremi, S., Mirjalili, S. M. & Coelho, L. D. S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl.47, 106–119 (2016).

    Google Scholar 

  49. Tawhid, M. A. & Savsani, V. Multi-objective sine-cosine algorithm (mo-sca) for multi-objective engineering design problems. Neural Comput. Appl.31, 915–929 (2019).

    Google Scholar 

  50. Mirjalili, S. Sca: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst.96, 120–133 (2016).

    Google Scholar 

  51. Widians, J. A., Wardoyo, R. & Hartati, S. A hybrid ant colony and grey wolf optimization algorithm for exploitation-exploration balance. Emerg. Sci. J.8, 1642–1654 (2024).

    Google Scholar 

  52. Farda, I. & Thammano, A. An adaptive differential evolution with multiple crossover strategies for optimization problems. HighTech Innov. J.5, 231–58 (2024).

    Google Scholar 

  53. Hedayati-Dezfooli, M. et al. Optimizing injection molding for propellers with soft computing, fuzzy evaluation, and taguchi method. Emerg. Sci. J.8, 2101–2119 (2024).

    Google Scholar 

  54. Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H. & Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell.48, 805–820 (2018).

    Google Scholar 

  55. Jangir, P., Buch, H., Mirjalili, S. & Manoharan, P. Mompa: Multi-objective marine predator algorithm for solving multi-objective optimization problems. Evolut. Intell.16, 169–195 (2023).

    Google Scholar 

  56. Li, B. & Wang, H. Multi-objective sparrow search algorithm: A novel algorithm for solving complex multi-objective optimisation problems. Expert Syst. Appl.210, 118414 (2022).

    Google Scholar 

  57. Mirjalili, S., Jangir, P. & Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Appl. Intell.46, 79–95 (2017).

    Google Scholar 

  58. Sharma, A., Gupta, K., Jangir, K., Jain, P. & Malakar, P. Multi-objective greylag goose optimization. In 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT), 374–379 (IEEE, 2024).

  59. Barrow, J. D. A chaotic cosmology. Nature267, 117–120 (1977).

    Google Scholar 

  60. Kanso, A. & Smaoui, N. Logistic chaotic maps for binary numbers generations. Chaos Solitons Fractals40, 2557–2568 (2009).

    Google Scholar 

  61. Knowles, J. D. & Corne, D. W. Approximating the nondominated front using the pareto archived evolution strategy. Evolut. Comput.8, 149–172 (2000).

    Google Scholar 

  62. Coello, C. A. C., Pulido, G. T. & Lechuga, M. S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evolut. Comput.8, 256–279 (2004).

    Google Scholar 

  63. Deb, K., Agrawal, S., Pratap, A. & Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-II. In International conference on parallel problem solving from nature, 849–858 (Springer, 2000).

  64. Nguyen, L., Bui, L. T. & Abbass, H. A. Dmea-II: The direction-based multi-objective evolutionary algorithm-ii. Soft Comput.18, 2119–2134 (2014).

    Google Scholar 

  65. Panda, A. & Pani, S. A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Appl. Soft Comput.46, 344–360 (2016).

    Google Scholar 

  66. Bui, L. T. et al. Dmea: A direction-based multiobjective evolutionary algorithm. Memetic Comput.3, 271–285 (2011).

    Google Scholar 

  67. Schütze, O., Laumanns, M., Tantar, E., Coello, C. A. C. & Talbi, E.-G. Computing gap free pareto front approximations with stochastic search algorithms. Evolut. Comput.18, 65–96 (2010).

    Google Scholar 

  68. Coello Coello, C. A., Dhaenens, C. & Jourdan, L. Multi-objective combinatorial optimization: Problematic and context. In Advances in multi-objective nature inspired computing, 1–21 (Springer, 2010).

  69. Zitzler, E. Evolutionary algorithms for multiobjective optimization: Methods and applications, vol. 63 (Shaker Ithaca, 1999).

  70. Dhiman, G. et al. Emosoa: A new evolutionary multi-objective seagull optimization algorithm for global optimization. Int. J. Mach. Learn. Cybernetics12, 571–596 (2021).

    Google Scholar 

  71. Dhiman, G. & Kumar, V. Multi-objective spotted hyena optimizer: A multi-objective optimization algorithm for engineering problems. Knowl.-Based Syst.150, 175–197 (2018).

    Google Scholar 

  72. Rey, D. & Neuhäuser, M. Wilcoxon-signed-rank test. In International encyclopedia of statistical science, 1658–1659 (Springer, 2011).

  73. Halim, A. H., Ismail, I. & Das, S. Performance assessment of the metaheuristic optimization algorithms: An exhaustive review. Artif. Intell. Rev.54, 2323–2409 (2021).

    Google Scholar 

  74. Coello, C. A. C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Comput. Methods Appl. Mech. Eng.191, 1245–1287 (2002).

    Google Scholar 

  75. Kamil, A. T., Saleh, H. M. & Abd-Alla, I. H. A multi-swarm structure for particle swarm optimization: Solving the welded beam design problem. In Journal of Physics: Conference Series, vol. 1804, 012012 (IOP Publishing, 2021).

  76. Abd Elaziz, M. et al. Advanced metaheuristic techniques for mechanical design problems. Arch. Comput. Methods Eng. 29, 695–716 (2022).

  77. Stolpe, M. Truss optimization with discrete design variables: A critical review. Struct. Multidiscip. Optimization53, 349–374 (2016).

    Google Scholar 

  78. Rauf, H. T. et al. Multi population-based chaotic differential evolution for multi-modal and multi-objective optimization problems. Appl. Soft Comput.132, 109909 (2023).

    Google Scholar 

  79. Ma, X. et al. Moea/d with opposition-based learning for multiobjective optimization problem. Neurocomputing146, 48–64 (2014).

    Google Scholar 

  80. Pan, L., Xu, W., Li, L., He, C. & Cheng, R. Adaptive simulated binary crossover for rotated multi-objective optimization. Swarm Evolut. Comput.60, 100759 (2021).

    Google Scholar 

  81. Mousa, A., El-Shorbagy, M. A. & Abd-El-Wahed, W. F. Local search based hybrid particle swarm optimization algorithm for multiobjective optimization. Swarm Evolut. Comput.3, 1–14 (2012).

    Google Scholar 

  82. Zhao, M. et al. A surrogate-assisted multi-objective evolutionary algorithm with dimension-reduction for production optimization. J. Petroleum Sci. Eng.192, 107192 (2020).

    Google Scholar 

  83. Xu, Q., Xu, Z. & Ma, T. A survey of multiobjective evolutionary algorithms based on decomposition: Variants, challenges and future directions. IEEE Access8, 41588–41614 (2020).

    Google Scholar 

Download references

Funding

Open access funding provided by Manipal Academy of Higher Education, Manipal. , India.

Author information

Author notes
  1. D. Tarunika and Ashish Sharma contributed equally to this work.

Authors and Affiliations

  1. Department of Electronics and Communication Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India

    D. Tarunika & Ashish Sharma

Authors
  1. D. Tarunika
    View author publications

    Search author on:PubMed Google Scholar

  2. Ashish Sharma
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Tarunika D: Visualization & writing original draft; Ashish Sharma : Methodology, Validation.

Corresponding author

Correspondence to Ashish Sharma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarunika, D., Sharma, A. A multiobjective human evolutionary optimization algorithm for complex engineering problems. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34467-5

Download citation

  • Received: 16 August 2025

  • Accepted: 29 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41598-025-34467-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Dynamic archive
  • Human evolutionary dynamics
  • Multi-objective optimization
  • Pareto optimality
  • Roulette–Wheel Selection
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics