Abstract
Multi-objective optimization problems (MOPs) demand algorithms that effectively balance convergence, diversity, and computational efficiency. To address this challenge, a novel Multi-Objective Human Evolutionary Optimization Algorithm (MOHEOA) is proposed, inspired by the dynamics of human societal evolution. MOHEOA structures the search process into two adaptive phases: human exploration and human development, integrating a fixed-size dynamic archive to maintain and utilize non-dominated Pareto solutions. The algorithm begins with a logistic chaos mapping for population initialization, ensuring robust diversity. During the development phase, individuals are classified into leaders, explorers, followers, and losers, each employing specialized strategies tailored for multi-objective search. A roulette-wheel selection mechanism dynamically selects leaders from the archive, optimizing the trade-off between exploration and exploitation. To validate MOHEOA’s performance, extensive experiments on twenty-three benchmark test functions and four real-world engineering design problems are conducted. Comparative evaluations against state-of-the-art multi-objective algorithms demonstrate that MOHEOA consistently outperforms competitors in convergence speed, solution diversity, and Pareto optimality. The algorithm’s robustness and adaptability make it a compelling choice for complex optimization tasks. For reproducibility and further research, the MATLAB implementation of MOHEOA is publicly available at: https://github.com/swatzash/MOHEOA.
Data availability
The Code and datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.
References
Holland, J. H. Genetic algorithms. Sci. Am.267, 66–73 (1992).
Storn, R. & Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optimization11, 341–359 (1997).
Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks, vol. 4, 1942–1948 (ieee, 1995).
Abualigah, L. et al. Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng.157, 107250 (2021).
Rashedi, E., Nezamabadi-Pour, H. & Saryazdi, S. Gsa: A gravitational search algorithm. Inform. Sci.179, 2232–2248 (2009).
Pereira, J. L. J. et al. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl.170, 114522 (2021).
Askari, Q., Younas, I. & Saeed, M. Political optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl.-Based Syst.195, 105709 (2020).
Lian, J. & Hui, G. Human evolutionary optimization algorithm. Expert Syst. Appl.241, 122638 (2024).
Pashaei, E. & Pashaei, E. An efficient binary chimp optimization algorithm for feature selection in biomedical data classification. Neural Comput. Appl.34, 6427–6451 (2022).
Gupta, R., Nanda, S. J. & Shukla, U. P. Cloud detection in satellite images using multi-objective social spider optimization. Appl. Soft Comput.79, 203–226 (2019).
Sharma, A. & Nanda, S. J. Memory guided aquila optimization algorithm with controlled search mechanism for seismicity analysis of earthquake prone regions. Appl. Soft Comput.148, 110894 (2023).
Deb, K. Nonlinear goal programming using multi-objective genetic algorithms. J. Oper. Res. Society52, 291–302 (2001).
Zitzler, E., Deb, K. & Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolution. Comput.8, 173–195 (2000).
Dhiman, G. et al. Mosoa: A new multi-objective seagull optimization algorithm. Expert Syst. Appl.167, 114150 (2021).
Coello, C. A. C. Evolutionary Algorithms for Solving Multi-Objective Problems (Springer, 2007).
Nagy, M. et al. Multi-objective optimization methods as a decision making strategy. Int. J. Eng. Res. Technol.9, 516–522 (2020).
Cho, J.-H., Wang, Y., Chen, R., Chan, K. S. & Swami, A. A survey on modeling and optimizing multi-objective systems. IEEE Commun. Surveys Tutorials19, 1867–1901 (2017).
Petchrompo, S., Coit, D. W., Brintrup, A., Wannakrairot, A. & Parlikad, A. K. A review of pareto pruning methods for multi-objective optimization. Comput. Ind. Eng.167, 108022 (2022).
Yang, L. et al. A many-objective evolutionary algorithm based on interaction force and hybrid optimization mechanism. Swarm Evolution. Comput.90, 101667 (2024).
Gutjahr, W. J. & Pichler, A. Stochastic multi-objective optimization: A survey on non-scalarizing methods. Ann. Operations Res.236, 475–499 (2016).
Liu, Z.-F. et al. Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach. Energy235, 121407 (2021).
Guo, K. & Zhang, L. Multi-objective optimization for improved project management: Current status and future directions. Automat. Construct.139, 104256 (2022).
Pereira, J. L. J., Oliver, G. A., Francisco, M. B., Cunha, S. S. Jr. & Gomes, G. F. A review of multi-objective optimization: Methods and algorithms in mechanical engineering problems. Arch. Comput. Methods Eng.29, 2285–2308 (2022).
Rostami, M. et al. Gene selection for microarray data classification via multi-objective graph theoretic-based method. Artif. Intell. Med.123, 102228 (2022).
Deng, X., Li, M., Deng, S. & Wang, L. Hybrid gene selection approach using xgboost and multi-objective genetic algorithm for cancer classification. Med. Biol. Eng. Comput.60, 663–681 (2022).
Wei, W. et al. Multi-objective optimization for resource allocation in vehicular cloud computing networks. IEEE Trans. Intell. Transport. Syst.23, 25536–25545 (2021).
Khodadadi, N., Abualigah, L., El-Kenawy, E.-S.M., Snasel, V. & Mirjalili, S. An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems. IEEE Access10, 106673–106698 (2022).
Bessedik, M. et al. An efficient hybrid multi-objective memetic algorithm for the frequency assignment problem. Eng. Appl. Artif. Intell.87, 103265 (2020).
Premkumar, M., Jangir, P., Kumar, B. S., Alqudah, M. A. & Nisar, K. S. Multi-objective grey wolf optimization algorithm for solving real-world bldc motor design problem. Comput. Mater. Continua. 70 (2022).
Jin, R., Rocco, P. & Geng, Y. Cartesian trajectory planning of space robots using a multi-objective optimization. Aerosp. Sci. Technol.108, 106360 (2021).
Weiszer, M., Burke, E. K. & Chen, J. Multi-objective routing and scheduling for airport ground movement. Transport. Res. Part C Emerg. Technol.119, 102734 (2020).
Piri, J. & Mohapatra, P. An analytical study of modified multi-objective harris hawk optimizer towards medical data feature selection. Comput. Biol. Med.135, 104558 (2021).
Yang, X.-S. Nature-Inspired Optimization Algorithms. (Academic Press, 2020).
Deb, K., Thiele, L., Laumanns, M. & Zitzler, E. Scalable multi-objective optimization test problems. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 1, 825–830 (IEEE, 2002).
Zhang, Q. et al. Multiobjective optimization test instances for the cec 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report264, 1–30 (2008).
Tian, Y., Cheng, R., Zhang, X., Li, M. & Jin, Y. Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems [research frontier]. IEEE Comput. Intell. Magaz.14, 61–74 (2019).
Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evolut. Comput.1, 67–82 (1997).
Coello, C. C. & Lechuga, M. S. Mopso: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 2, 1051–1056 (IEEE, 2002).
Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evolut. Comput.6, 182–197 (2002).
Zitzler, E., Laumanns, M. & Thiele, L. Spea2: Improving the strength pareto evolutionary algorithm (2001).
Zhang, Q. & Li, H. Moea/d: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evolut. Comput.11, 712–731 (2007).
Sharma, A. & Nanda, S. J. A multi-objective chimp optimization algorithm for seismicity de-clustering. Appl. Soft Comput.121, 108742 (2022).
Coello, C. C. Evolutionary multi-objective optimization: A historical view of the field. IEEE Comput. Intell. Magaz.1, 28–36 (2006).
Das, I. & Dennis, J. E. Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optimization8, 631–657 (1998).
Kim, I. Y. & De Weck, O. L. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Struct. Multidiscip. Optimization29, 149–158 (2005).
Kim, I. Y. & de Weck, O. L. Adaptive weighted sum method for multiobjective optimization: A new method for pareto front generation. Struct. Multidiscip. Optimization31, 105–116 (2006).
Angus, D. & Woodward, C. Multiple objective ant colony optimisation. Swarm Intell.3, 69–85 (2009).
Mirjalili, S., Saremi, S., Mirjalili, S. M. & Coelho, L. D. S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl.47, 106–119 (2016).
Tawhid, M. A. & Savsani, V. Multi-objective sine-cosine algorithm (mo-sca) for multi-objective engineering design problems. Neural Comput. Appl.31, 915–929 (2019).
Mirjalili, S. Sca: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst.96, 120–133 (2016).
Widians, J. A., Wardoyo, R. & Hartati, S. A hybrid ant colony and grey wolf optimization algorithm for exploitation-exploration balance. Emerg. Sci. J.8, 1642–1654 (2024).
Farda, I. & Thammano, A. An adaptive differential evolution with multiple crossover strategies for optimization problems. HighTech Innov. J.5, 231–58 (2024).
Hedayati-Dezfooli, M. et al. Optimizing injection molding for propellers with soft computing, fuzzy evaluation, and taguchi method. Emerg. Sci. J.8, 2101–2119 (2024).
Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H. & Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell.48, 805–820 (2018).
Jangir, P., Buch, H., Mirjalili, S. & Manoharan, P. Mompa: Multi-objective marine predator algorithm for solving multi-objective optimization problems. Evolut. Intell.16, 169–195 (2023).
Li, B. & Wang, H. Multi-objective sparrow search algorithm: A novel algorithm for solving complex multi-objective optimisation problems. Expert Syst. Appl.210, 118414 (2022).
Mirjalili, S., Jangir, P. & Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Appl. Intell.46, 79–95 (2017).
Sharma, A., Gupta, K., Jangir, K., Jain, P. & Malakar, P. Multi-objective greylag goose optimization. In 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT), 374–379 (IEEE, 2024).
Barrow, J. D. A chaotic cosmology. Nature267, 117–120 (1977).
Kanso, A. & Smaoui, N. Logistic chaotic maps for binary numbers generations. Chaos Solitons Fractals40, 2557–2568 (2009).
Knowles, J. D. & Corne, D. W. Approximating the nondominated front using the pareto archived evolution strategy. Evolut. Comput.8, 149–172 (2000).
Coello, C. A. C., Pulido, G. T. & Lechuga, M. S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evolut. Comput.8, 256–279 (2004).
Deb, K., Agrawal, S., Pratap, A. & Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-II. In International conference on parallel problem solving from nature, 849–858 (Springer, 2000).
Nguyen, L., Bui, L. T. & Abbass, H. A. Dmea-II: The direction-based multi-objective evolutionary algorithm-ii. Soft Comput.18, 2119–2134 (2014).
Panda, A. & Pani, S. A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Appl. Soft Comput.46, 344–360 (2016).
Bui, L. T. et al. Dmea: A direction-based multiobjective evolutionary algorithm. Memetic Comput.3, 271–285 (2011).
Schütze, O., Laumanns, M., Tantar, E., Coello, C. A. C. & Talbi, E.-G. Computing gap free pareto front approximations with stochastic search algorithms. Evolut. Comput.18, 65–96 (2010).
Coello Coello, C. A., Dhaenens, C. & Jourdan, L. Multi-objective combinatorial optimization: Problematic and context. In Advances in multi-objective nature inspired computing, 1–21 (Springer, 2010).
Zitzler, E. Evolutionary algorithms for multiobjective optimization: Methods and applications, vol. 63 (Shaker Ithaca, 1999).
Dhiman, G. et al. Emosoa: A new evolutionary multi-objective seagull optimization algorithm for global optimization. Int. J. Mach. Learn. Cybernetics12, 571–596 (2021).
Dhiman, G. & Kumar, V. Multi-objective spotted hyena optimizer: A multi-objective optimization algorithm for engineering problems. Knowl.-Based Syst.150, 175–197 (2018).
Rey, D. & Neuhäuser, M. Wilcoxon-signed-rank test. In International encyclopedia of statistical science, 1658–1659 (Springer, 2011).
Halim, A. H., Ismail, I. & Das, S. Performance assessment of the metaheuristic optimization algorithms: An exhaustive review. Artif. Intell. Rev.54, 2323–2409 (2021).
Coello, C. A. C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Comput. Methods Appl. Mech. Eng.191, 1245–1287 (2002).
Kamil, A. T., Saleh, H. M. & Abd-Alla, I. H. A multi-swarm structure for particle swarm optimization: Solving the welded beam design problem. In Journal of Physics: Conference Series, vol. 1804, 012012 (IOP Publishing, 2021).
Abd Elaziz, M. et al. Advanced metaheuristic techniques for mechanical design problems. Arch. Comput. Methods Eng. 29, 695–716 (2022).
Stolpe, M. Truss optimization with discrete design variables: A critical review. Struct. Multidiscip. Optimization53, 349–374 (2016).
Rauf, H. T. et al. Multi population-based chaotic differential evolution for multi-modal and multi-objective optimization problems. Appl. Soft Comput.132, 109909 (2023).
Ma, X. et al. Moea/d with opposition-based learning for multiobjective optimization problem. Neurocomputing146, 48–64 (2014).
Pan, L., Xu, W., Li, L., He, C. & Cheng, R. Adaptive simulated binary crossover for rotated multi-objective optimization. Swarm Evolut. Comput.60, 100759 (2021).
Mousa, A., El-Shorbagy, M. A. & Abd-El-Wahed, W. F. Local search based hybrid particle swarm optimization algorithm for multiobjective optimization. Swarm Evolut. Comput.3, 1–14 (2012).
Zhao, M. et al. A surrogate-assisted multi-objective evolutionary algorithm with dimension-reduction for production optimization. J. Petroleum Sci. Eng.192, 107192 (2020).
Xu, Q., Xu, Z. & Ma, T. A survey of multiobjective evolutionary algorithms based on decomposition: Variants, challenges and future directions. IEEE Access8, 41588–41614 (2020).
Funding
Open access funding provided by Manipal Academy of Higher Education, Manipal. , India.
Author information
Authors and Affiliations
Contributions
Tarunika D: Visualization & writing original draft; Ashish Sharma : Methodology, Validation.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Tarunika, D., Sharma, A. A multiobjective human evolutionary optimization algorithm for complex engineering problems. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34467-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-34467-5