Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Development of Eu-doped CdS photodetectors with enhanced photodetection performance
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Development of Eu-doped CdS photodetectors with enhanced photodetection performance

  • Surayyi Mousa Al Mujamid1,
  • T. H. AlAbdulaal1,
  • I. M. Ashraf1,
  • Ali M. Alshehri1,
  • Mohd Taukeer Khan2,
  • Sambasivam Sangaraju3 &
  • …
  • Mohd. Shkir1,4 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Nanoscience and technology
  • Optics and photonics
  • Physics

Abstract

Eu-doped CdS nanostructured thin films with varying Eu concentrations (0, 2, 4, 6, 8, and 10 wt%) were synthesized using the spray pyrolysis technique. The fabricated films were systematically evaluated for their structural, optical, electrical, and photodetection characteristics. X-ray diffraction confirmed the formation of polycrystalline hexagonal CdS with preferred growth along the (101) plane, with crystallite sizes in the range of 11–14 nm. Raman spectra supported the structural observations by revealing the characteristic 1LO and 2LO phonon modes at 299 cm− 1 and 601 cm− 1. AFM imaging (2D/3D) further confirmed the formation of grain clusters across all samples. Optical measurements indicated transmittance values of 55–85% and direct band gaps between 2.42 and 2.44 eV. Photoconductivity studies under dark and illuminated conditions in the 297–350 K range revealed a decrease in activation energy with increasing Eu content, indicating enhanced carrier generation and transport. Transient photoconductivity showed that carrier and differential lifetimes increased with Eu incorporation. The photocurrent improved significantly with Eu doping, with the 10 wt% Eu-doped film exhibiting approximately a 22-fold enhancement compared to undoped CdS. Photodetectors fabricated using these films demonstrated enhanced visible-light photodetection performance. The device based on the 10 wt% Eu-doped CdS film exhibited rapid rise (0.20–0.38 s) and decay (0.36–0.46 s) times, along with substantial improvements in responsivity (8.71 A/W), external quantum efficiency (1710%), and specific detectivity (4 × 1013 Jones). These findings indicate that Eu-doped CdS thin films offer strong potential for high-performance photosensing applications.

Data availability

Data will be made available at a reasonable request from the corresponding author.

References

  1. Kumar, K. D. A. et al. Insight into al doping effect on photodetector performance of cds and cds:Mg films prepared by self-controlled nebulizer spray technique. J. Alloys Compd. 892, 160801. https://doi.org/10.1016/j.jallcom.2021.160801 (2022).

    Google Scholar 

  2. Sahu, S. & Bhattacharjee, M. Nanostructured ZnO thin Film-Based flexible printed sensor for High-Performance UV detection. Sens. Actuators Phys. 116196. https://doi.org/10.1016/j.sna.2025.116196 (2025).

  3. Shkir, M., Khan, M. T. & Khan, A. Impact of mo doping on photo-sensing properties of ZnO thin films for advanced photodetection applications. J. Alloys Compd. 985, 174009. https://doi.org/10.1016/j.jallcom.2024.174009 (2024).

    Google Scholar 

  4. Khan, Z. R. et al. Noticeably enhanced opto-electrical and photodetection performance of spray pyrolysis grown mn:cds nanostructured thin films for visible-light sensor applications. Surf. Interfaces. 28, 101586. https://doi.org/10.1016/j.surfin.2021.101586 (2022).

    Google Scholar 

  5. Kathalingam, A., Valanarasu, S., Ahamad, T., Alshehri, S. M. & Kim, H. S. Spray pressure variation effect on the properties of cds thin films for photodetector applications. Ceram. Int. 47, 7608–7616. https://doi.org/10.1016/j.ceramint.2020.11.100 (2021).

    Google Scholar 

  6. Khan, Z. R., Shkir, M., Alshammari, A. S., Ashraf, I. M. & AlFaify, S. Improved photodetection performance of nanostructured cds films based photodetectors via novel Er doping. J. Inorg. Organomet. Polym. Mater. 31, 3880–3893. https://doi.org/10.1007/s10904-021-02004-2 (2021).

    Google Scholar 

  7. Khan, Z. R., Munirah, M., Shkir, S. & Alfaify Opto-dielectric-nonlinear properties of Na–Zn–CdS alloys nanostructure thin films: role of Zn doping. Phys. B Condens. Matter. 588, 412194. https://doi.org/10.1016/j.physb.2020.412194 (2020).

    Google Scholar 

  8. Manthrammel, M. A. et al. Facile spray pyrolysis fabrication of al:cds thin films and their key linear and third order nonlinear optical analysis for optoelectronic applications. Opt. Mater. (Amst). 100. https://doi.org/10.1016/j.optmat.2020.109696 (2020).

  9. Khan, Z. R. et al. Linear and nonlinear optics of CBD grown nanocrystalline F doped cds thin films for optoelectronic applications: an effect of thickness. J. Electron. Mater. 47, 5386–5395. https://doi.org/10.1007/s11664-018-6437-9 (2018).

    Google Scholar 

  10. Panda, R. et al. Carrier recombination in Cu doped cds thin films: photocurrent and optical studies. Appl. Surf. Sci. 258, 5086–5093. https://doi.org/10.1016/j.apsusc.2012.01.131 (2012).

    Google Scholar 

  11. Voss, C., Subramanian, S. & Chang, C. H. Cadmium sulfide thin-film transistors fabricated by low-temperature chemical-bath deposition. J. Appl. Phys. 96, 5819–5823. https://doi.org/10.1063/1.1804244 (2004).

    Google Scholar 

  12. Ye, Y. et al. High-Performance single cds nanobelt Metal-Semiconductor Field-Effect Transistor-Based photodetectors. ACS Appl. Mater. Interfaces. 2, 2724–2727. https://doi.org/10.1021/am100661x (2010).

    Google Scholar 

  13. Liu, A. et al. Ultrahigh-performance photodetectors based on low-dimensional Cs2AgBiBr6/CdS heterojunction. J. Colloid Interface Sci. 679, 316–323. https://doi.org/10.1016/j.jcis.2024.09.245 (2025).

    Google Scholar 

  14. Salih, E. Y. Fabrication and photodetection performance evaluation of nanostructured CdS/Si MSM visible light photodetector. Opt. Mater. (Amst). 149, 115120. https://doi.org/10.1016/j.optmat.2024.115120 (2024).

    Google Scholar 

  15. Najm, N. I., Hassun, H. K., Al-Maiyaly, B. K. H., Hussein, B. H. & Shaban, A. H. Highly Selective CdS:Ag Heterojunction for Photodetector Applications (in: AIP Conf Proc, American Institute of Physics Inc., 2019). https://doi.org/10.1063/1.5116958

  16. Mohd. Shkir, I. M. et al. A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated cds thin films by novel Eu doping concentrations. Sens. Actuators Phys. 301, 111749. https://doi.org/10.1016/j.sna.2019.111749 (2020).

    Google Scholar 

  17. Boosagulla, D., Mandati, S., Allikayala, R. & Sarada, B. V. Room temperature pulse electrodeposition of cds thin films for application in solar cells and photoelectrochemical cells. ECS J. Solid State Sci. Technol. 7, P440–P446. https://doi.org/10.1149/2.0261808jss (2018).

    Google Scholar 

  18. Altiokka, B. & Yildirim, A. K. Electrodeposition of cds thin films at various pH values. J. Korean Phys. Soc. 72, 687–691. https://doi.org/10.3938/jkps.72.687 (2018).

    Google Scholar 

  19. Yılmaz, S. et al. Sm-doped cds thin films prepared by spray pyrolysis: a structural, optical, and electrical examination. Appl. Phys. A. 124, 502. https://doi.org/10.1007/s00339-018-1922-9 (2018).

    Google Scholar 

  20. Yılmaz, S. The investigation of spray pyrolysis grown cds thin films doped with Flourine atoms. Appl. Surf. Sci. 357, 873–879. https://doi.org/10.1016/j.apsusc.2015.09.098 (2015).

    Google Scholar 

  21. Li, J. Preparation and properties of cds thin films deposited by chemical bath deposition. Ceram. Int. 41, S376–S380. https://doi.org/10.1016/j.ceramint.2015.03.160 (2015).

    Google Scholar 

  22. Kerimova, A., Bagiyev, E., Aliyeva, E. & Bayramov, A. Nanostructured cds thin films deposited by spray pyrolysis method. Phys. Status Solidi C. 14 https://doi.org/10.1002/pssc.201600144 (2017).

  23. Sharma, B., Lalwani, R. & Das, R. Nanocrystalline cds thin films deposited by sol-gel spin coating method: effect of aging and doping on structural, optical, and electrical properties. Optik (Stuttg). 281, 170831. https://doi.org/10.1016/j.ijleo.2023.170831 (2023).

    Google Scholar 

  24. Liu, X. et al. Nanostructured cds buffer layer fabricated with a simple Spin-Coating method for Sb 2 S 3 solar cells. Phys. Status Solidi (a). 218. https://doi.org/10.1002/pssa.202100337 (2021).

  25. Bakke, J. R., Jung, H. J., Tanskanen, J. T., Sinclair, R. & Bent, S. F. Atomic layer deposition of cds films. Chem. Mater. 22, 4669–4678. https://doi.org/10.1021/cm100874f (2010).

    Google Scholar 

  26. Garcia, L. V. et al. CdS thin films prepared by laser assisted chemical bath deposition. Appl. Surf. Sci. 336, 329–334. https://doi.org/10.1016/j.apsusc.2014.12.122 (2015).

    Google Scholar 

  27. Garcia, L. V. et al. Structure and properties of cds thin films prepared by pulsed laser assisted chemical bath deposition. Mater. Res. Bull. 83, 459–467. https://doi.org/10.1016/j.materresbull.2016.06.027 (2016).

    Google Scholar 

  28. Chander, S. & Dhaka, M. S. Optical and structural constants of cds thin films grown by electron beam vacuum evaporation for solar cells. Thin Solid Films. 638, 179–188. https://doi.org/10.1016/j.tsf.2017.07.048 (2017).

    Google Scholar 

  29. Kobayashi, M. et al. Growth of cds self-organized quantum Dots by molecular beam epitaxy and application to light emitting diode structures. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 18, 1684–1687. https://doi.org/10.1116/1.591452 (2000).

    Google Scholar 

  30. Doroody, C. et al. A comparative study of cds thin films grown on ultra-thin glass substrates by RF Magnetron sputtering and chemical bath deposition. Mater. Sci. Semicond. Process. 133, 105935. https://doi.org/10.1016/j.mssp.2021.105935 (2021).

    Google Scholar 

  31. Chen, X. et al. CdS/Sb 2 S 3 heterojunction thin film solar cells with a thermally evaporated absorber. J. Mater. Chem. C Mater. 5, 9421–9428. https://doi.org/10.1039/C7TC02460F (2017).

    Google Scholar 

  32. Bhargava, R. N., Gallagher, D., Hong, X. & Nurmikko, A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416–419. https://doi.org/10.1103/PhysRevLett.72.416 (1994).

    Google Scholar 

  33. Gorer, S., Kodes, G., Sorek, Y. & Reisfeld, R. Crystal phase transformation in sol-gel films of nanocrystalline cdse and cds. Mater. Lett. 31, 209–214. https://doi.org/10.1016/S0167-577X(96)00272-8 (1997).

    Google Scholar 

  34. Ashraf, I. M. et al. Enhancement in photodetection properties of Ag/CdS/Ag devices through novel rare-earth metal Tb doping. Mater. Lett. 285, 129174. https://doi.org/10.1016/j.matlet.2020.129174 (2021).

    Google Scholar 

  35. Mohd. Shkir, Z. R. et al. A comprehensive experimental investigation of La@CdS nanostructured thin films: Structural, opto-nonlinear and photodetection properties. Surf. Interfaces. 24, 101063. https://doi.org/10.1016/j.surfin.2021.101063 (2021).

    Google Scholar 

  36. Yılmaz, S. et al. Physical properties of cds:ga thin films synthesized by spray pyrolysis technique. J. Mater. Sci.: Mater. Electron. 28, 3191–3199. https://doi.org/10.1007/s10854-016-5908-0 (2017).

    Google Scholar 

  37. Dávila-Pintle, J. A., Lozada-Morales, R., Palomino-Merino, M. R., Rivera-Márquez, J. A. & Portillo-Moreno, O. Zelaya-Angel, electrical properties of Er-doped cds thin films. J. Appl. Phys. 101 https://doi.org/10.1063/1.2408380 (2007).

  38. Ohiienko, O. V., Moiseyenko, V. N., Holochalov, D. O., Shvets, T. V. & Abu Sal, B. Luminescent Properties of Opal–Active Dielectric Matrix Nanocomposites Activated by Ions of Rare-Earth Elements, in: : pp. 357–368. (2023). https://doi.org/10.1007/978-3-031-18104-7_25

  39. Zhao, R. et al. Structural phase transition and photoluminescence properties of wurtzite cds:eu 3 + nanoparticles under high pressure. RSC Adv. 7, 31433–31440. https://doi.org/10.1039/C7RA03878J (2017).

    Google Scholar 

  40. Jia-ming & Liu Photonic Devices (Cambridge University Press, 2009).

  41. Debju & Ghosh Structurally Integrated Luminescence Based Oxygen Sensors with Organic LED/ Oxygen Sensitive Dye and PECVD Grown Thin Film Photodetectors (PROQQUEST LLC, Iowa State University, 2008).

  42. Cleveland, O. U. S. A. Model 6517B Electrometer User’s Manual, (2008).

  43. Yilmaz, S. The investigation of spray pyrolysis grown cds thin films doped with Flourine atoms. Appl. Surf. Sci. 357, 873–879. https://doi.org/10.1016/j.apsusc.2015.09.098 (2015).

    Google Scholar 

  44. Jayaramaiah, J. R., Jayanth, V. & Shamanth, R. Structural Elucidation and optical analysis on europium doped cadmium sulphide nano thin films. Optik (Stuttg). 208. https://doi.org/10.1016/j.ijleo.2019.164079 (2020).

  45. Rmili, A. et al. Structural, optical and electrical properties of Ni-doped cds thin films prepared by spray pyrolysis. J. Alloys Compd. 557, 53–59. https://doi.org/10.1016/j.jallcom.2012.12.136 (2013).

    Google Scholar 

  46. Yılmaz, S., Polat, I., Tomakin, M. & Bacaksız, E. A research on growth and characterization of cds:eu thin films. Appl. Phys. Mater. Sci. Process. 125 https://doi.org/10.1007/s00339-018-2369-8 (2019).

  47. Denton, A. R. & Ashcroft, N. W. Vegard’s law, (1991).

  48. Nakrela, A. et al. Site location of al-dopant in ZnO lattice by exploiting the structural and optical characterisation of zno: al thin films. Results Phys. 6, 133–138. https://doi.org/10.1016/j.rinp.2016.01.010 (2016).

    Google Scholar 

  49. Yilmaz, S., Atasoy, Y., Tomakin, M. & Bacaksiz, E. Comparative studies of CdS, CdS:Al, cds:na and CdS:(Al-Na) thin films prepared by spray pyrolysis. Superlattices Microstruct. 88, 299–307. https://doi.org/10.1016/j.spmi.2015.09.021 (2015).

    Google Scholar 

  50. Trabelsi, A. B. G. et al. A comprehensive study on Co-doped cds nanostructured films fit for optoelectronic applications. J. Mater. Res. Technol. 21, 3982–4001. https://doi.org/10.1016/j.jmrt.2022.11.002 (2022).

    Google Scholar 

  51. Pandey, A., Dalal, S., Dutta, S. & Dixit, A. Structural characterization of polycrystalline thin films by X-ray diffraction techniques. J. Mater. Sci.: Mater. Electron. 32, 1341–1368. https://doi.org/10.1007/s10854-020-04998-w (2021).

    Google Scholar 

  52. Shkir, M. et al. Enhanced dielectric and electrical properties of PbS nanostructures facilely synthesized by low-cost chemical route: an effect of Ce doping concentrations. Mater. Chem. Phys. 278, 125626. https://doi.org/10.1016/j.matchemphys.2021.125626 (2022).

    Google Scholar 

  53. Chandekar, K. V. et al. Comparative study of Pr-doped and undoped PbS nanostructures facilely synthesized for optoelectronic applications. Solid State Sci. 122, 106773. https://doi.org/10.1016/j.solidstatesciences.2021.106773 (2021).

    Google Scholar 

  54. Chandekar, K. V. et al. Significant and systematic impact of yttrium doping on physical properties of nickel oxide nanoparticles for optoelectronics applications. J. Mater. Res. Technol. 15, 2584–2600. https://doi.org/10.1016/j.jmrt.2021.09.072 (2021).

    Google Scholar 

  55. Shkir, M., Chandekar, K. V., Alshahrani, T., Kumar, A. & Alfaify, S. A novel terbium doping effect on physical properties of lead sulfide nanostructures: A facile synthesis and characterization. J. Mater. Res. 35, 2664–2675. https://doi.org/10.1557/jmr.2020.216 (2020).

    Google Scholar 

  56. Wang, Y., Tang, W. & Zhang, L. Crystalline size effects on texture Coefficient, electrical and optical properties of Sputter-deposited Ga-doped ZnO thin films. J. Mater. Sci. Technol. 31, 175–181. https://doi.org/10.1016/j.jmst.2014.11.009 (2015).

    Google Scholar 

  57. Kumar, M., Kumar, A. & Abhyankar, A. C. Influence of texture coefficient on surface morphology and sensing properties of W-Doped nanocrystalline Tin oxide thin films. ACS Appl. Mater. Interfaces. 7, 3571–3580. https://doi.org/10.1021/am507397z (2015).

    Google Scholar 

  58. Shkir, M., Anis, M., Shaikh, S. S. & AlFaify, S. An investigation on structural, morphological, optical and third order nonlinear properties of facilely spray pyrolysis fabricated in:cds thin films. Superlattices Microstruct. 133 https://doi.org/10.1016/j.spmi.2019.106202 (2019).

  59. Lee, J. Raman scattering and photoluminescence analysis of B-doped CdS thin films, in: Thin Solid Films, : pp. 170–174. (2004). https://doi.org/10.1016/j.tsf.2003.10.103

  60. Khan, M., Shahid Khan, M., Aziz, A., Abdul Rahman, S. & Raza Khan, Z. Spectroscopic studies of sol-gel grown cds nanocrystalline thin films for optoelectronic devices. Mater. Sci. Semicond. Process. 16, 1894–1898. https://doi.org/10.1016/j.mssp.2013.07.010 (2013).

    Google Scholar 

  61. Tell, B., Damen, T. C. & Porto, S. P. S. Raman Effect in Cadmium Sulfide, (1966).

  62. Rossetti, R., Nakahara, S. & Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of cds crystallites in aqueous solution. J. Chem. Phys. 79, 1086–1088. https://doi.org/10.1063/1.445834 (1983).

    Google Scholar 

  63. Dai, C. M. Quantum size effects in CdS thin films, (1992).

  64. Gilic, M. et al. Optical properties of cds thin films. Opt. Mater. (Amst). 35, 1112–1117. https://doi.org/10.1016/j.optmat.2012.12.028 (2013).

    Google Scholar 

  65. Chuu, D. S., Dai, C. M., Hsieh, W. F. & Tsai, C. T. Raman investigations of the surface modes of the crystallites in cds thin films grown by pulsed laser and thermal evaporation. J. Appl. Phys. 69, 8402–8404. https://doi.org/10.1063/1.347405 (1991).

    Google Scholar 

  66. Budde, M. et al. Structural, optical, and electrical properties of unintentionally doped NiO layers grown on MgO by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 123 https://doi.org/10.1063/1.5026738 (2018).

  67. Shkir, M. et al. Structural, morphological, vibrational, optical, and nonlinear characteristics of spray pyrolyzed cds thin films: effect of Gd doping content. Mater. Chem. Phys. 255 https://doi.org/10.1016/j.matchemphys.2020.123615 (2020).

  68. Senthil, K., Mangalaraj, D., Narayandass, S. K., Kesavamoorthy, R. & Reddy, G. L. N. Raman scattering and XRD analysis in argon ion implanted CdS thin ®lms prepared by vacuum evaporation, n.d. www.elsevier.nl/locate/nimb

  69. Binnig, G., Quate, C. F., Gerber, C. & Microscope, A. F. Phys. Rev. Lett. 56 930–933. https://doi.org/10.1103/PhysRevLett.56.930. (1986).

    Google Scholar 

  70. Kalinin, S. V. & Bonnell, D. A. Scanning impedance microscopy of electroactive interfaces. Appl. Phys. Lett. 78, 1306–1308. https://doi.org/10.1063/1.1350627 (2001).

    Google Scholar 

  71. Butt, H. J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152. https://doi.org/10.1016/j.surfrep.2005.08.003 (2005).

    Google Scholar 

  72. García, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301. https://doi.org/10.1016/S0167-5729(02)00077-8 (2002).

    Google Scholar 

  73. Khmissi, H., El Sayed, A. M. & Shaban, M. Structural, morphological, optical properties and wettability of spin-coated copper oxide; influences of film thickness, Ni, and (La, Ni) co-doping. J. Mater. Sci. 51, 5924–5938. https://doi.org/10.1007/s10853-016-9894-7 (2016).

    Google Scholar 

  74. Wu, J. et al. Characterization of Sn-doped CuO thin films prepared by a sol–gel method. J. Mater. Sci.: Mater. Electron. 27, 1719–1724. https://doi.org/10.1007/s10854-015-3945-8 (2016).

    Google Scholar 

  75. El Sayed, A. M., Taha, S., Said, G. & Yakuphanoglu, F. Controlling the structural and optical properties of nanostructured ZnO thin films by cadmium content. Superlattices Microstruct. 65, 35–47. https://doi.org/10.1016/j.spmi.2013.10.041 (2014).

    Google Scholar 

  76. Castro-Rodrıguez, R. et al. Effect of indium Tin oxide substrate roughness on the morphology, structural and optical properties of cds thin films. Applied Surface Science, 61 (3-4), 340-346. https://doi.org/10.1016/S0169-4332(99)00574-7 (2000). https://doi.org/10.1016/S0169-4332(99)00574-7

  77. Shkir, M. et al. Structural, morphological, vibrational, optical, and nonlinear characteristics of spray pyrolyzed cds thin films: effect of Gd doping content. Mater. Chem. Phys. 255, 123615. https://doi.org/10.1016/j.matchemphys.2020.123615 (2020).

    Google Scholar 

  78. Nava Núñez, M. Y., Martínez-de la, A. & Cruz Nitric oxide removal by action of ZnO photocatalyst hydrothermally synthesized in presence of EDTA. Mater. Sci. Semicond. Process. 81, 94–101. https://doi.org/10.1016/j.mssp.2018.03.012 (2018).

    Google Scholar 

  79. Azhar, M. et al. Morphological, Photoluminescence, and electrical measurements of Rare-Earth Metal-Doped cadmium sulfide thin films. ACS Omega. 8, 36321–36332. https://doi.org/10.1021/acsomega.3c04936 (2023).

    Google Scholar 

  80. Yılmaz, S. et al. Enhancement in the optical and electrical properties of cds thin films through Ga and K co-doping. Mater. Sci. Semicond. Process. 60, 45–52. https://doi.org/10.1016/j.mssp.2016.12.016 (2017).

    Google Scholar 

  81. Pal, M. et al. y Synthesis of Eu + 3 doped ZnS nanoparticles by a wet chemical route and its characterization, Opt Mater (Amst) 35 2664–2669. (2013). https://doi.org/10.1016/j.optmat.2013.08.003

  82. Ikhmayies, S. J., Juwhari, H. K. & Ahmad-Bitar, R. N. Nanocrystalline cds: in thin films prepared by the spray-pyrolysis technique. J. Lumin. 141, 27–32. https://doi.org/10.1016/j.jlumin.2013.02.045 (2013).

    Google Scholar 

  83. Wang, Y., Tang, W., Zhang, L. & Zhao, J. Electron concentration dependence of optical band gap shift in Ga-doped ZnO thin films by Magnetron sputtering. Thin Solid Films. 565, 62–68. https://doi.org/10.1016/j.tsf.2014.06.046 (2014).

    Google Scholar 

  84. Yang, S. & Zhang, Y. Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol–gel method. J. Magn. Magn. Mater. 334, 52–58. https://doi.org/10.1016/j.jmmm.2013.01.026 (2013).

    Google Scholar 

  85. Urbach, F. The Long-Wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324. https://doi.org/10.1103/PhysRev.92.1324 (1953).

    Google Scholar 

  86. Koao, L. F., Dejene, F. B., Kroon, R. E. & Swart, H. C. Effect of Eu3 + on the structure, morphology and optical properties of flower-like ZnO synthesized using chemical bath deposition. J. Lumin. 147, 85–89. https://doi.org/10.1016/j.jlumin.2013.10.045 (2014).

    Google Scholar 

  87. Saleem, M. Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. Int. J. Phys. Sci. 7 https://doi.org/10.5897/IJPS12.219 (2012).

  88. Zhang, J. & Jiang, F. Temperature-dependent photoluminescence of Mg-doped cds nanowires. Phys. Lett. A. 373, 3888–3891. https://doi.org/10.1016/j.physleta.2009.08.034 (2009).

    Google Scholar 

  89. Shkir, M., Shaikh, S. S. & AlFaify, S. An investigation on optical-nonlinear and optical limiting properties of cds: an effect of Te doping concentrations for optoelectronic applications. J. Mater. Sci.: Mater. Electron. 30, 17469–17480. https://doi.org/10.1007/s10854-019-02097-z (2019).

    Google Scholar 

  90. Shkir, M., Anis, M., Shaikh, S. S. & AlFaify, S. An investigation on structural, morphological, optical and third order nonlinear properties of facilely spray pyrolysis fabricated in:cds thin films. Superlattices Microstruct. 133, 106202. https://doi.org/10.1016/j.spmi.2019.106202 (2019).

    Google Scholar 

  91. Xu, X. et al. Dynamics of bound exciton complexes in cds nanobelts. ACS Nano. 5, 3660–3669. https://doi.org/10.1021/nn2008832 (2011).

    Google Scholar 

  92. Bora, J., Borthakur, A., Arandhara, G. & Saikia, P. K. Effect of ag doping on the optical and structural properties of CdS/polyvinyl alcohol thin films by thermolysis process. Thin Solid Films. 734 https://doi.org/10.1016/j.tsf.2021.138847 (2021).

  93. Mahapatra, N., Panja, S., Mandal, A. & Halder, M. A single source-precursor route for the one-pot synthesis of highly luminescent cds quantum Dots as ultra-sensitive and selective photoluminescence sensor for Co2 + and Ni2 + ions. J. Mater. Chem. C Mater. 2, 7373–7384. https://doi.org/10.1039/c4tc00887a (2014).

    Google Scholar 

  94. Shinde, V. R., Gujar, T. P., Lokhande, C. D., Mane, R. S. & Han, S. H. Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Mater. Chem. Phys. 96, 326–330. https://doi.org/10.1016/j.matchemphys.2005.07.045 (2006).

    Google Scholar 

  95. Park, W. D. Structural, optical and photoconductive properties of chemically deposited nanocrystalline cds thin films. Trans. Electr. Electron. Mater. 12, 164–168. https://doi.org/10.4313/TEEM.2011.12.4.164 (2011).

    Google Scholar 

  96. Park, W. D. Photoluminescence of nanocrystalline cds thin films prepared by chemical bath deposition. Trans. Electr. Electron. Mater. 11, 170–173. https://doi.org/10.4313/TEEM.2010.11.4.170 (2010).

    Google Scholar 

  97. Simmons, J. G. & Taylor, G. W. Theory of photoconductivity in amorphous semiconductors containing relatively narrow trap bands. J. Phys. C: Solid State Phys. 7 3051. https://iopscience.iop.org/article/10.1088/0022-3719/7/17/015 (1974).

  98. Brinza, M., Willekens, J., Benkhedir, M. L., Emelianova, E. V. & Adriaenssens, G. J. REVIEW Photoconductivity methods in materials research, n.d.

  99. Kumar, D., Kumar, S., Kumar, D. & Kumar, S. Composition Dependence of Photoconductivity in Amorphous Thin Films of Se_{.80-x}Te_{.20}Ge_x, n.d.

  100. Badr, A. M. & Ashraf, I. M. Spectral photoelectronic features of TlInSe 2 single crystals. Phys. Scr. 86 https://doi.org/10.1088/0031-8949/86/03/035704 (2012).

  101. El-Zahhar, A. A., Ashraf, I. M., Idris, A. M. & Sanaa, M. F. An in-depth investigation in photoconductivity of Poly(vinyl alcohol)/Starch/Magnetite nanoparticle composite films for optoelectronic applications. Optik (Stuttg). 208. https://doi.org/10.1016/j.ijleo.2019.164107 (2020).

  102. Bube, R. H. Photoconductivity of Solids ( Wiley, 1960).

  103. Zulfequar, M. Photoconductivity of Se 90-x Te 10 Zn x thin films, (2014).

  104. Fuhs, W. & Stat, J. P. STUKE: Hopping Recombination in Se Crystals Hopping Recombination in Trigonal Selenium Single Crystals, (1968).

  105. By & Ambika Effect of Bi Incorporation on the Optical, Electrical And Thermal Properties of A-Se-Te and A-Ge-Te Glassy Alloys, (2009).

  106. Shkir, M., Ashraf, I. M. & Alfaify, S. Surface area, optical and electrical studies on PbS nanosheets for visible light photo-detector application. Phys. Scr. 94 https://doi.org/10.1088/1402-4896/aaf55a (2019).

  107. High performance type-II. InAs/GaSb superlattice infrared photodetectors with a short cut-off wavelength. Opto-Electron. Rev. https://doi.org/10.24425/opelre.2023.144555 (2024).

    Google Scholar 

  108. Muhammad, A., Hassan, Z., Mohammad, S. M., Rajamanickam, S. & Shitu, I. G. Fabrication of ultra-violet photodetector with enhanced optoelectronic parameters using low-cost F-doped ZnO nanostructures. Sens. Actuators Phys. 332, 113092. https://doi.org/10.1016/j.sna.2021.113092 (2021).

    Google Scholar 

  109. Guo, F. & Noise, L. High Detectivity Photodetectors based on Organic Materials, (2014).

  110. Wang, H. Novel Material-Based High-Performance Photodetector for Advanced Applications, (2016).

  111. Deka, B. & Boruah Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors. Nanoscale Adv. 1, 2059–2085. https://doi.org/10.1039/C9NA00130A (2019).

    Google Scholar 

  112. Deka Boruah, B., Naidu Majji, S., Nandi, S. & Misra, A. Doping controlled pyro-phototronic effect in self-powered zinc oxide photodetector for enhancement of photoresponse. Nanoscale 10, 3451–3459. https://doi.org/10.1039/C7NR08125A (2018).

    Google Scholar 

  113. Ashraf, I. M. et al. Enhancement in photodetection properties of Ag/CdS/Ag devices through novel rare-earth metal Tb doping. Mater. Lett. 285 https://doi.org/10.1016/j.matlet.2020.129174 (2021).

  114. Raj, I. L. P. et al. Enhancement of photo-sensing properties of cds thin films by changing spray solution volume. Sens. Actuators Phys. 315, 112306. https://doi.org/10.1016/j.sna.2020.112306 (2020).

    Google Scholar 

  115. Shkir, M. et al. A noticeable effect of Pr doping on key optoelectrical properties of cds thin films prepared using spray pyrolysis technique for high-performance photodetector applications. Ceram. Int. 46, 4652–4663. https://doi.org/10.1016/j.ceramint.2019.10.196 (2020).

    Google Scholar 

  116. Shkir, M. et al. Facile fabrication of Ag/Y:CdS/Ag thin films-based photodetectors with enhanced photodetection performance. Sens. Actuators Phys. 331, 112890. https://doi.org/10.1016/j.sna.2021.112890 (2021).

    Google Scholar 

  117. F. Guo, Low Noise, High Detectivity Photodetectors based on Organic Materials, 2014.

  118. H. Wang, Novel Material-Based High-Performance Photodetector for Advanced Applications, 2016.

  119. A.B.G. Trabelsi, K. V. Chandekar, F.H. Alkallas, I.M. Ashraf, J. Hakami, M. Shkir, A. Kaushik, S. AlFaify, A comprehensive study on Co-doped CdS nanostructured films fit for optoelectronic applications, Journal of Materials Research and Technology 21 (2022) 3982–4001. https://doi.org/10.1016/j.jmrt.2022.11.002

  120. B. Deka Boruah, Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors, Nanoscale Adv 1 (2019) 2059–2085. https://doi.org/10.1039/C9NA00130A.

  121. B. Deka Boruah, S. Naidu Majji, S. Nandi, A. Misra, Doping controlled pyro-phototronic effect in self-powered zinc oxide photodetector for enhancement of photoresponse, Nanoscale 10 (2018) 3451–3459. https://doi.org/10.1039/C7NR08125A.

  122. I.M. Ashraf, M.T. Khan, K. Hariprasad, S. Valanarasu, T. Alshahrani, A. Almohammedi, H. Algarni, M. Shkir, S. AlFaify, Enhancement in photodetection properties of Ag/CdS/Ag devices through novel rare-earth metal Tb doping, Mater Lett 285 (2021). https://doi.org/10.1016/j.matlet.2020.129174.

  123. K.D.A. Kumar, P. Mele, S. Golovynskyi, A. Khan, A.M. El-Toni, A.A. Ansari, R.K. Gupta, H. Ghaithan, S. AlFaify, P. Murahari, Insight into Al doping effect on photodetector performance of CdS and CdS:Mg films prepared by self-controlled nebulizer spray technique, J Alloys Compd 892 (2022) 160801. https://doi.org/10.1016/j.jallcom.2021.160801.

  124. I.L.P. Raj, S. Valanarasu, K.H. Prasad, M.S. Revathy, N. Chidhambaram, V. Ganesh, H. Algarni, H.E. Ali, Enhancement of photo-sensing properties of CdS thin films by changing spray solution volume, Sens Actuators A Phys 315 (2020) 112306. https://doi.org/10.1016/j.sna.2020.112306.

  125. Mohd. Shkir, I.M. Ashraf, S. AlFaify, A.M. El-Toni, M. Ahmed, A. Khan, A noticeable effect of Pr doping on key optoelectrical properties of CdS thin films prepared using spray pyrolysis technique for high-performance photodetector applications, Ceram Int 46 (2020) 4652–4663. https://doi.org/10.1016/j.ceramint.2019.10.196.

  126. Mohd. Shkir, Z.R. Khan, K. V. Chandekar, T. Alshahrani, I.M. Ashraf, A. Khan, R. Marnadu, R.A. Zargar, P. Mohanraj, M.S. Revathy, M.A. Manthrammel, M.A. Sayed, H.E. Ali, I.S. Yahia, E.S. Yousef, H. Algarni, S. AlFaify, M.F. Sanaa, Facile fabrication of Ag/Y:CdS/Ag thin films-based photodetectors with enhanced photodetection performance, Sens Actuators A Phys 331 (2021) 112890. https://doi.org/10.1016/j.sna.2021.112890.

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/52/46. The researchers wish to extend their sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah (KSA) for the support provided to the Post-Publishing Program. Also, this research was funded by UAEU _AUA joint program, number 12R248, National water and energy center, United Arab Emirates University.

Funding

This research was funded by KKU through grant number RGP2/52/46, DSP, IUM, and UAEU _AUA under joint program, number 12R248.

Author information

Authors and Affiliations

  1. Department of Physics, College of Science, King Khalid University, P.O. Box 960, AlQura’a, Abha, 61421, Saudi Arabia

    Surayyi Mousa Al Mujamid, T. H. AlAbdulaal, I. M. Ashraf, Ali M. Alshehri & Mohd. Shkir

  2. Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia

    Mohd Taukeer Khan

  3. National Water & Energy Center, United Arab Emirates University, Al Ain, 15551, UAE

    Sambasivam Sangaraju

  4. Smart Nano-Materials for Energy and Optoelectronic Devices Lab, Central Labs, King Khalid University, P.O. Box 960, AlQura’a, Abha, 61421, Saudi Arabia

    Mohd. Shkir

Authors
  1. Surayyi Mousa Al Mujamid
    View author publications

    Search author on:PubMed Google Scholar

  2. T. H. AlAbdulaal
    View author publications

    Search author on:PubMed Google Scholar

  3. I. M. Ashraf
    View author publications

    Search author on:PubMed Google Scholar

  4. Ali M. Alshehri
    View author publications

    Search author on:PubMed Google Scholar

  5. Mohd Taukeer Khan
    View author publications

    Search author on:PubMed Google Scholar

  6. Sambasivam Sangaraju
    View author publications

    Search author on:PubMed Google Scholar

  7. Mohd. Shkir
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Surayyi Mousa Al Mujamid, T.H. AlAbdulaal, I.M. Ashraf, Ali M. Alshehri, Mohd Taukeer Khan, Sambasivam Sangaraju, Mohd. Shkir: Investigation, Methodology, Conceptualization, Data curation, Formal analysis, Writing – original draft, Funding acquisition, Project administration, Resources, Software, Validation, Visualization, Writing – review & editing.

Corresponding authors

Correspondence to Mohd Taukeer Khan or Sambasivam Sangaraju.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Mujamid, S.M., AlAbdulaal, T.H., Ashraf, I.M. et al. Development of Eu-doped CdS photodetectors with enhanced photodetection performance. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34678-w

Download citation

  • Received: 25 August 2025

  • Accepted: 30 December 2025

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41598-025-34678-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Eu doping
  • CdS thin films
  • Optical properties
  • Photodetectors
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing