Abstract
Eu-doped CdS nanostructured thin films with varying Eu concentrations (0, 2, 4, 6, 8, and 10 wt%) were synthesized using the spray pyrolysis technique. The fabricated films were systematically evaluated for their structural, optical, electrical, and photodetection characteristics. X-ray diffraction confirmed the formation of polycrystalline hexagonal CdS with preferred growth along the (101) plane, with crystallite sizes in the range of 11–14 nm. Raman spectra supported the structural observations by revealing the characteristic 1LO and 2LO phonon modes at 299 cm− 1 and 601 cm− 1. AFM imaging (2D/3D) further confirmed the formation of grain clusters across all samples. Optical measurements indicated transmittance values of 55–85% and direct band gaps between 2.42 and 2.44 eV. Photoconductivity studies under dark and illuminated conditions in the 297–350 K range revealed a decrease in activation energy with increasing Eu content, indicating enhanced carrier generation and transport. Transient photoconductivity showed that carrier and differential lifetimes increased with Eu incorporation. The photocurrent improved significantly with Eu doping, with the 10 wt% Eu-doped film exhibiting approximately a 22-fold enhancement compared to undoped CdS. Photodetectors fabricated using these films demonstrated enhanced visible-light photodetection performance. The device based on the 10 wt% Eu-doped CdS film exhibited rapid rise (0.20–0.38 s) and decay (0.36–0.46 s) times, along with substantial improvements in responsivity (8.71 A/W), external quantum efficiency (1710%), and specific detectivity (4 × 1013 Jones). These findings indicate that Eu-doped CdS thin films offer strong potential for high-performance photosensing applications.
Data availability
Data will be made available at a reasonable request from the corresponding author.
References
Kumar, K. D. A. et al. Insight into al doping effect on photodetector performance of cds and cds:Mg films prepared by self-controlled nebulizer spray technique. J. Alloys Compd. 892, 160801. https://doi.org/10.1016/j.jallcom.2021.160801 (2022).
Sahu, S. & Bhattacharjee, M. Nanostructured ZnO thin Film-Based flexible printed sensor for High-Performance UV detection. Sens. Actuators Phys. 116196. https://doi.org/10.1016/j.sna.2025.116196 (2025).
Shkir, M., Khan, M. T. & Khan, A. Impact of mo doping on photo-sensing properties of ZnO thin films for advanced photodetection applications. J. Alloys Compd. 985, 174009. https://doi.org/10.1016/j.jallcom.2024.174009 (2024).
Khan, Z. R. et al. Noticeably enhanced opto-electrical and photodetection performance of spray pyrolysis grown mn:cds nanostructured thin films for visible-light sensor applications. Surf. Interfaces. 28, 101586. https://doi.org/10.1016/j.surfin.2021.101586 (2022).
Kathalingam, A., Valanarasu, S., Ahamad, T., Alshehri, S. M. & Kim, H. S. Spray pressure variation effect on the properties of cds thin films for photodetector applications. Ceram. Int. 47, 7608–7616. https://doi.org/10.1016/j.ceramint.2020.11.100 (2021).
Khan, Z. R., Shkir, M., Alshammari, A. S., Ashraf, I. M. & AlFaify, S. Improved photodetection performance of nanostructured cds films based photodetectors via novel Er doping. J. Inorg. Organomet. Polym. Mater. 31, 3880–3893. https://doi.org/10.1007/s10904-021-02004-2 (2021).
Khan, Z. R., Munirah, M., Shkir, S. & Alfaify Opto-dielectric-nonlinear properties of Na–Zn–CdS alloys nanostructure thin films: role of Zn doping. Phys. B Condens. Matter. 588, 412194. https://doi.org/10.1016/j.physb.2020.412194 (2020).
Manthrammel, M. A. et al. Facile spray pyrolysis fabrication of al:cds thin films and their key linear and third order nonlinear optical analysis for optoelectronic applications. Opt. Mater. (Amst). 100. https://doi.org/10.1016/j.optmat.2020.109696 (2020).
Khan, Z. R. et al. Linear and nonlinear optics of CBD grown nanocrystalline F doped cds thin films for optoelectronic applications: an effect of thickness. J. Electron. Mater. 47, 5386–5395. https://doi.org/10.1007/s11664-018-6437-9 (2018).
Panda, R. et al. Carrier recombination in Cu doped cds thin films: photocurrent and optical studies. Appl. Surf. Sci. 258, 5086–5093. https://doi.org/10.1016/j.apsusc.2012.01.131 (2012).
Voss, C., Subramanian, S. & Chang, C. H. Cadmium sulfide thin-film transistors fabricated by low-temperature chemical-bath deposition. J. Appl. Phys. 96, 5819–5823. https://doi.org/10.1063/1.1804244 (2004).
Ye, Y. et al. High-Performance single cds nanobelt Metal-Semiconductor Field-Effect Transistor-Based photodetectors. ACS Appl. Mater. Interfaces. 2, 2724–2727. https://doi.org/10.1021/am100661x (2010).
Liu, A. et al. Ultrahigh-performance photodetectors based on low-dimensional Cs2AgBiBr6/CdS heterojunction. J. Colloid Interface Sci. 679, 316–323. https://doi.org/10.1016/j.jcis.2024.09.245 (2025).
Salih, E. Y. Fabrication and photodetection performance evaluation of nanostructured CdS/Si MSM visible light photodetector. Opt. Mater. (Amst). 149, 115120. https://doi.org/10.1016/j.optmat.2024.115120 (2024).
Najm, N. I., Hassun, H. K., Al-Maiyaly, B. K. H., Hussein, B. H. & Shaban, A. H. Highly Selective CdS:Ag Heterojunction for Photodetector Applications (in: AIP Conf Proc, American Institute of Physics Inc., 2019). https://doi.org/10.1063/1.5116958
Mohd. Shkir, I. M. et al. A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated cds thin films by novel Eu doping concentrations. Sens. Actuators Phys. 301, 111749. https://doi.org/10.1016/j.sna.2019.111749 (2020).
Boosagulla, D., Mandati, S., Allikayala, R. & Sarada, B. V. Room temperature pulse electrodeposition of cds thin films for application in solar cells and photoelectrochemical cells. ECS J. Solid State Sci. Technol. 7, P440–P446. https://doi.org/10.1149/2.0261808jss (2018).
Altiokka, B. & Yildirim, A. K. Electrodeposition of cds thin films at various pH values. J. Korean Phys. Soc. 72, 687–691. https://doi.org/10.3938/jkps.72.687 (2018).
Yılmaz, S. et al. Sm-doped cds thin films prepared by spray pyrolysis: a structural, optical, and electrical examination. Appl. Phys. A. 124, 502. https://doi.org/10.1007/s00339-018-1922-9 (2018).
Yılmaz, S. The investigation of spray pyrolysis grown cds thin films doped with Flourine atoms. Appl. Surf. Sci. 357, 873–879. https://doi.org/10.1016/j.apsusc.2015.09.098 (2015).
Li, J. Preparation and properties of cds thin films deposited by chemical bath deposition. Ceram. Int. 41, S376–S380. https://doi.org/10.1016/j.ceramint.2015.03.160 (2015).
Kerimova, A., Bagiyev, E., Aliyeva, E. & Bayramov, A. Nanostructured cds thin films deposited by spray pyrolysis method. Phys. Status Solidi C. 14 https://doi.org/10.1002/pssc.201600144 (2017).
Sharma, B., Lalwani, R. & Das, R. Nanocrystalline cds thin films deposited by sol-gel spin coating method: effect of aging and doping on structural, optical, and electrical properties. Optik (Stuttg). 281, 170831. https://doi.org/10.1016/j.ijleo.2023.170831 (2023).
Liu, X. et al. Nanostructured cds buffer layer fabricated with a simple Spin-Coating method for Sb 2 S 3 solar cells. Phys. Status Solidi (a). 218. https://doi.org/10.1002/pssa.202100337 (2021).
Bakke, J. R., Jung, H. J., Tanskanen, J. T., Sinclair, R. & Bent, S. F. Atomic layer deposition of cds films. Chem. Mater. 22, 4669–4678. https://doi.org/10.1021/cm100874f (2010).
Garcia, L. V. et al. CdS thin films prepared by laser assisted chemical bath deposition. Appl. Surf. Sci. 336, 329–334. https://doi.org/10.1016/j.apsusc.2014.12.122 (2015).
Garcia, L. V. et al. Structure and properties of cds thin films prepared by pulsed laser assisted chemical bath deposition. Mater. Res. Bull. 83, 459–467. https://doi.org/10.1016/j.materresbull.2016.06.027 (2016).
Chander, S. & Dhaka, M. S. Optical and structural constants of cds thin films grown by electron beam vacuum evaporation for solar cells. Thin Solid Films. 638, 179–188. https://doi.org/10.1016/j.tsf.2017.07.048 (2017).
Kobayashi, M. et al. Growth of cds self-organized quantum Dots by molecular beam epitaxy and application to light emitting diode structures. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 18, 1684–1687. https://doi.org/10.1116/1.591452 (2000).
Doroody, C. et al. A comparative study of cds thin films grown on ultra-thin glass substrates by RF Magnetron sputtering and chemical bath deposition. Mater. Sci. Semicond. Process. 133, 105935. https://doi.org/10.1016/j.mssp.2021.105935 (2021).
Chen, X. et al. CdS/Sb 2 S 3 heterojunction thin film solar cells with a thermally evaporated absorber. J. Mater. Chem. C Mater. 5, 9421–9428. https://doi.org/10.1039/C7TC02460F (2017).
Bhargava, R. N., Gallagher, D., Hong, X. & Nurmikko, A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416–419. https://doi.org/10.1103/PhysRevLett.72.416 (1994).
Gorer, S., Kodes, G., Sorek, Y. & Reisfeld, R. Crystal phase transformation in sol-gel films of nanocrystalline cdse and cds. Mater. Lett. 31, 209–214. https://doi.org/10.1016/S0167-577X(96)00272-8 (1997).
Ashraf, I. M. et al. Enhancement in photodetection properties of Ag/CdS/Ag devices through novel rare-earth metal Tb doping. Mater. Lett. 285, 129174. https://doi.org/10.1016/j.matlet.2020.129174 (2021).
Mohd. Shkir, Z. R. et al. A comprehensive experimental investigation of La@CdS nanostructured thin films: Structural, opto-nonlinear and photodetection properties. Surf. Interfaces. 24, 101063. https://doi.org/10.1016/j.surfin.2021.101063 (2021).
Yılmaz, S. et al. Physical properties of cds:ga thin films synthesized by spray pyrolysis technique. J. Mater. Sci.: Mater. Electron. 28, 3191–3199. https://doi.org/10.1007/s10854-016-5908-0 (2017).
Dávila-Pintle, J. A., Lozada-Morales, R., Palomino-Merino, M. R., Rivera-Márquez, J. A. & Portillo-Moreno, O. Zelaya-Angel, electrical properties of Er-doped cds thin films. J. Appl. Phys. 101 https://doi.org/10.1063/1.2408380 (2007).
Ohiienko, O. V., Moiseyenko, V. N., Holochalov, D. O., Shvets, T. V. & Abu Sal, B. Luminescent Properties of Opal–Active Dielectric Matrix Nanocomposites Activated by Ions of Rare-Earth Elements, in: : pp. 357–368. (2023). https://doi.org/10.1007/978-3-031-18104-7_25
Zhao, R. et al. Structural phase transition and photoluminescence properties of wurtzite cds:eu 3 + nanoparticles under high pressure. RSC Adv. 7, 31433–31440. https://doi.org/10.1039/C7RA03878J (2017).
Jia-ming & Liu Photonic Devices (Cambridge University Press, 2009).
Debju & Ghosh Structurally Integrated Luminescence Based Oxygen Sensors with Organic LED/ Oxygen Sensitive Dye and PECVD Grown Thin Film Photodetectors (PROQQUEST LLC, Iowa State University, 2008).
Cleveland, O. U. S. A. Model 6517B Electrometer User’s Manual, (2008).
Yilmaz, S. The investigation of spray pyrolysis grown cds thin films doped with Flourine atoms. Appl. Surf. Sci. 357, 873–879. https://doi.org/10.1016/j.apsusc.2015.09.098 (2015).
Jayaramaiah, J. R., Jayanth, V. & Shamanth, R. Structural Elucidation and optical analysis on europium doped cadmium sulphide nano thin films. Optik (Stuttg). 208. https://doi.org/10.1016/j.ijleo.2019.164079 (2020).
Rmili, A. et al. Structural, optical and electrical properties of Ni-doped cds thin films prepared by spray pyrolysis. J. Alloys Compd. 557, 53–59. https://doi.org/10.1016/j.jallcom.2012.12.136 (2013).
Yılmaz, S., Polat, I., Tomakin, M. & Bacaksız, E. A research on growth and characterization of cds:eu thin films. Appl. Phys. Mater. Sci. Process. 125 https://doi.org/10.1007/s00339-018-2369-8 (2019).
Denton, A. R. & Ashcroft, N. W. Vegard’s law, (1991).
Nakrela, A. et al. Site location of al-dopant in ZnO lattice by exploiting the structural and optical characterisation of zno: al thin films. Results Phys. 6, 133–138. https://doi.org/10.1016/j.rinp.2016.01.010 (2016).
Yilmaz, S., Atasoy, Y., Tomakin, M. & Bacaksiz, E. Comparative studies of CdS, CdS:Al, cds:na and CdS:(Al-Na) thin films prepared by spray pyrolysis. Superlattices Microstruct. 88, 299–307. https://doi.org/10.1016/j.spmi.2015.09.021 (2015).
Trabelsi, A. B. G. et al. A comprehensive study on Co-doped cds nanostructured films fit for optoelectronic applications. J. Mater. Res. Technol. 21, 3982–4001. https://doi.org/10.1016/j.jmrt.2022.11.002 (2022).
Pandey, A., Dalal, S., Dutta, S. & Dixit, A. Structural characterization of polycrystalline thin films by X-ray diffraction techniques. J. Mater. Sci.: Mater. Electron. 32, 1341–1368. https://doi.org/10.1007/s10854-020-04998-w (2021).
Shkir, M. et al. Enhanced dielectric and electrical properties of PbS nanostructures facilely synthesized by low-cost chemical route: an effect of Ce doping concentrations. Mater. Chem. Phys. 278, 125626. https://doi.org/10.1016/j.matchemphys.2021.125626 (2022).
Chandekar, K. V. et al. Comparative study of Pr-doped and undoped PbS nanostructures facilely synthesized for optoelectronic applications. Solid State Sci. 122, 106773. https://doi.org/10.1016/j.solidstatesciences.2021.106773 (2021).
Chandekar, K. V. et al. Significant and systematic impact of yttrium doping on physical properties of nickel oxide nanoparticles for optoelectronics applications. J. Mater. Res. Technol. 15, 2584–2600. https://doi.org/10.1016/j.jmrt.2021.09.072 (2021).
Shkir, M., Chandekar, K. V., Alshahrani, T., Kumar, A. & Alfaify, S. A novel terbium doping effect on physical properties of lead sulfide nanostructures: A facile synthesis and characterization. J. Mater. Res. 35, 2664–2675. https://doi.org/10.1557/jmr.2020.216 (2020).
Wang, Y., Tang, W. & Zhang, L. Crystalline size effects on texture Coefficient, electrical and optical properties of Sputter-deposited Ga-doped ZnO thin films. J. Mater. Sci. Technol. 31, 175–181. https://doi.org/10.1016/j.jmst.2014.11.009 (2015).
Kumar, M., Kumar, A. & Abhyankar, A. C. Influence of texture coefficient on surface morphology and sensing properties of W-Doped nanocrystalline Tin oxide thin films. ACS Appl. Mater. Interfaces. 7, 3571–3580. https://doi.org/10.1021/am507397z (2015).
Shkir, M., Anis, M., Shaikh, S. S. & AlFaify, S. An investigation on structural, morphological, optical and third order nonlinear properties of facilely spray pyrolysis fabricated in:cds thin films. Superlattices Microstruct. 133 https://doi.org/10.1016/j.spmi.2019.106202 (2019).
Lee, J. Raman scattering and photoluminescence analysis of B-doped CdS thin films, in: Thin Solid Films, : pp. 170–174. (2004). https://doi.org/10.1016/j.tsf.2003.10.103
Khan, M., Shahid Khan, M., Aziz, A., Abdul Rahman, S. & Raza Khan, Z. Spectroscopic studies of sol-gel grown cds nanocrystalline thin films for optoelectronic devices. Mater. Sci. Semicond. Process. 16, 1894–1898. https://doi.org/10.1016/j.mssp.2013.07.010 (2013).
Tell, B., Damen, T. C. & Porto, S. P. S. Raman Effect in Cadmium Sulfide, (1966).
Rossetti, R., Nakahara, S. & Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of cds crystallites in aqueous solution. J. Chem. Phys. 79, 1086–1088. https://doi.org/10.1063/1.445834 (1983).
Dai, C. M. Quantum size effects in CdS thin films, (1992).
Gilic, M. et al. Optical properties of cds thin films. Opt. Mater. (Amst). 35, 1112–1117. https://doi.org/10.1016/j.optmat.2012.12.028 (2013).
Chuu, D. S., Dai, C. M., Hsieh, W. F. & Tsai, C. T. Raman investigations of the surface modes of the crystallites in cds thin films grown by pulsed laser and thermal evaporation. J. Appl. Phys. 69, 8402–8404. https://doi.org/10.1063/1.347405 (1991).
Budde, M. et al. Structural, optical, and electrical properties of unintentionally doped NiO layers grown on MgO by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 123 https://doi.org/10.1063/1.5026738 (2018).
Shkir, M. et al. Structural, morphological, vibrational, optical, and nonlinear characteristics of spray pyrolyzed cds thin films: effect of Gd doping content. Mater. Chem. Phys. 255 https://doi.org/10.1016/j.matchemphys.2020.123615 (2020).
Senthil, K., Mangalaraj, D., Narayandass, S. K., Kesavamoorthy, R. & Reddy, G. L. N. Raman scattering and XRD analysis in argon ion implanted CdS thin ®lms prepared by vacuum evaporation, n.d. www.elsevier.nl/locate/nimb
Binnig, G., Quate, C. F., Gerber, C. & Microscope, A. F. Phys. Rev. Lett. 56 930–933. https://doi.org/10.1103/PhysRevLett.56.930. (1986).
Kalinin, S. V. & Bonnell, D. A. Scanning impedance microscopy of electroactive interfaces. Appl. Phys. Lett. 78, 1306–1308. https://doi.org/10.1063/1.1350627 (2001).
Butt, H. J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152. https://doi.org/10.1016/j.surfrep.2005.08.003 (2005).
García, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301. https://doi.org/10.1016/S0167-5729(02)00077-8 (2002).
Khmissi, H., El Sayed, A. M. & Shaban, M. Structural, morphological, optical properties and wettability of spin-coated copper oxide; influences of film thickness, Ni, and (La, Ni) co-doping. J. Mater. Sci. 51, 5924–5938. https://doi.org/10.1007/s10853-016-9894-7 (2016).
Wu, J. et al. Characterization of Sn-doped CuO thin films prepared by a sol–gel method. J. Mater. Sci.: Mater. Electron. 27, 1719–1724. https://doi.org/10.1007/s10854-015-3945-8 (2016).
El Sayed, A. M., Taha, S., Said, G. & Yakuphanoglu, F. Controlling the structural and optical properties of nanostructured ZnO thin films by cadmium content. Superlattices Microstruct. 65, 35–47. https://doi.org/10.1016/j.spmi.2013.10.041 (2014).
Castro-Rodrıguez, R. et al. Effect of indium Tin oxide substrate roughness on the morphology, structural and optical properties of cds thin films. Applied Surface Science, 61 (3-4), 340-346. https://doi.org/10.1016/S0169-4332(99)00574-7 (2000). https://doi.org/10.1016/S0169-4332(99)00574-7
Shkir, M. et al. Structural, morphological, vibrational, optical, and nonlinear characteristics of spray pyrolyzed cds thin films: effect of Gd doping content. Mater. Chem. Phys. 255, 123615. https://doi.org/10.1016/j.matchemphys.2020.123615 (2020).
Nava Núñez, M. Y., Martínez-de la, A. & Cruz Nitric oxide removal by action of ZnO photocatalyst hydrothermally synthesized in presence of EDTA. Mater. Sci. Semicond. Process. 81, 94–101. https://doi.org/10.1016/j.mssp.2018.03.012 (2018).
Azhar, M. et al. Morphological, Photoluminescence, and electrical measurements of Rare-Earth Metal-Doped cadmium sulfide thin films. ACS Omega. 8, 36321–36332. https://doi.org/10.1021/acsomega.3c04936 (2023).
Yılmaz, S. et al. Enhancement in the optical and electrical properties of cds thin films through Ga and K co-doping. Mater. Sci. Semicond. Process. 60, 45–52. https://doi.org/10.1016/j.mssp.2016.12.016 (2017).
Pal, M. et al. y Synthesis of Eu + 3 doped ZnS nanoparticles by a wet chemical route and its characterization, Opt Mater (Amst) 35 2664–2669. (2013). https://doi.org/10.1016/j.optmat.2013.08.003
Ikhmayies, S. J., Juwhari, H. K. & Ahmad-Bitar, R. N. Nanocrystalline cds: in thin films prepared by the spray-pyrolysis technique. J. Lumin. 141, 27–32. https://doi.org/10.1016/j.jlumin.2013.02.045 (2013).
Wang, Y., Tang, W., Zhang, L. & Zhao, J. Electron concentration dependence of optical band gap shift in Ga-doped ZnO thin films by Magnetron sputtering. Thin Solid Films. 565, 62–68. https://doi.org/10.1016/j.tsf.2014.06.046 (2014).
Yang, S. & Zhang, Y. Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol–gel method. J. Magn. Magn. Mater. 334, 52–58. https://doi.org/10.1016/j.jmmm.2013.01.026 (2013).
Urbach, F. The Long-Wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324. https://doi.org/10.1103/PhysRev.92.1324 (1953).
Koao, L. F., Dejene, F. B., Kroon, R. E. & Swart, H. C. Effect of Eu3 + on the structure, morphology and optical properties of flower-like ZnO synthesized using chemical bath deposition. J. Lumin. 147, 85–89. https://doi.org/10.1016/j.jlumin.2013.10.045 (2014).
Saleem, M. Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. Int. J. Phys. Sci. 7 https://doi.org/10.5897/IJPS12.219 (2012).
Zhang, J. & Jiang, F. Temperature-dependent photoluminescence of Mg-doped cds nanowires. Phys. Lett. A. 373, 3888–3891. https://doi.org/10.1016/j.physleta.2009.08.034 (2009).
Shkir, M., Shaikh, S. S. & AlFaify, S. An investigation on optical-nonlinear and optical limiting properties of cds: an effect of Te doping concentrations for optoelectronic applications. J. Mater. Sci.: Mater. Electron. 30, 17469–17480. https://doi.org/10.1007/s10854-019-02097-z (2019).
Shkir, M., Anis, M., Shaikh, S. S. & AlFaify, S. An investigation on structural, morphological, optical and third order nonlinear properties of facilely spray pyrolysis fabricated in:cds thin films. Superlattices Microstruct. 133, 106202. https://doi.org/10.1016/j.spmi.2019.106202 (2019).
Xu, X. et al. Dynamics of bound exciton complexes in cds nanobelts. ACS Nano. 5, 3660–3669. https://doi.org/10.1021/nn2008832 (2011).
Bora, J., Borthakur, A., Arandhara, G. & Saikia, P. K. Effect of ag doping on the optical and structural properties of CdS/polyvinyl alcohol thin films by thermolysis process. Thin Solid Films. 734 https://doi.org/10.1016/j.tsf.2021.138847 (2021).
Mahapatra, N., Panja, S., Mandal, A. & Halder, M. A single source-precursor route for the one-pot synthesis of highly luminescent cds quantum Dots as ultra-sensitive and selective photoluminescence sensor for Co2 + and Ni2 + ions. J. Mater. Chem. C Mater. 2, 7373–7384. https://doi.org/10.1039/c4tc00887a (2014).
Shinde, V. R., Gujar, T. P., Lokhande, C. D., Mane, R. S. & Han, S. H. Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Mater. Chem. Phys. 96, 326–330. https://doi.org/10.1016/j.matchemphys.2005.07.045 (2006).
Park, W. D. Structural, optical and photoconductive properties of chemically deposited nanocrystalline cds thin films. Trans. Electr. Electron. Mater. 12, 164–168. https://doi.org/10.4313/TEEM.2011.12.4.164 (2011).
Park, W. D. Photoluminescence of nanocrystalline cds thin films prepared by chemical bath deposition. Trans. Electr. Electron. Mater. 11, 170–173. https://doi.org/10.4313/TEEM.2010.11.4.170 (2010).
Simmons, J. G. & Taylor, G. W. Theory of photoconductivity in amorphous semiconductors containing relatively narrow trap bands. J. Phys. C: Solid State Phys. 7 3051. https://iopscience.iop.org/article/10.1088/0022-3719/7/17/015 (1974).
Brinza, M., Willekens, J., Benkhedir, M. L., Emelianova, E. V. & Adriaenssens, G. J. REVIEW Photoconductivity methods in materials research, n.d.
Kumar, D., Kumar, S., Kumar, D. & Kumar, S. Composition Dependence of Photoconductivity in Amorphous Thin Films of Se_{.80-x}Te_{.20}Ge_x, n.d.
Badr, A. M. & Ashraf, I. M. Spectral photoelectronic features of TlInSe 2 single crystals. Phys. Scr. 86 https://doi.org/10.1088/0031-8949/86/03/035704 (2012).
El-Zahhar, A. A., Ashraf, I. M., Idris, A. M. & Sanaa, M. F. An in-depth investigation in photoconductivity of Poly(vinyl alcohol)/Starch/Magnetite nanoparticle composite films for optoelectronic applications. Optik (Stuttg). 208. https://doi.org/10.1016/j.ijleo.2019.164107 (2020).
Bube, R. H. Photoconductivity of Solids ( Wiley, 1960).
Zulfequar, M. Photoconductivity of Se 90-x Te 10 Zn x thin films, (2014).
Fuhs, W. & Stat, J. P. STUKE: Hopping Recombination in Se Crystals Hopping Recombination in Trigonal Selenium Single Crystals, (1968).
By & Ambika Effect of Bi Incorporation on the Optical, Electrical And Thermal Properties of A-Se-Te and A-Ge-Te Glassy Alloys, (2009).
Shkir, M., Ashraf, I. M. & Alfaify, S. Surface area, optical and electrical studies on PbS nanosheets for visible light photo-detector application. Phys. Scr. 94 https://doi.org/10.1088/1402-4896/aaf55a (2019).
High performance type-II. InAs/GaSb superlattice infrared photodetectors with a short cut-off wavelength. Opto-Electron. Rev. https://doi.org/10.24425/opelre.2023.144555 (2024).
Muhammad, A., Hassan, Z., Mohammad, S. M., Rajamanickam, S. & Shitu, I. G. Fabrication of ultra-violet photodetector with enhanced optoelectronic parameters using low-cost F-doped ZnO nanostructures. Sens. Actuators Phys. 332, 113092. https://doi.org/10.1016/j.sna.2021.113092 (2021).
Guo, F. & Noise, L. High Detectivity Photodetectors based on Organic Materials, (2014).
Wang, H. Novel Material-Based High-Performance Photodetector for Advanced Applications, (2016).
Deka, B. & Boruah Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors. Nanoscale Adv. 1, 2059–2085. https://doi.org/10.1039/C9NA00130A (2019).
Deka Boruah, B., Naidu Majji, S., Nandi, S. & Misra, A. Doping controlled pyro-phototronic effect in self-powered zinc oxide photodetector for enhancement of photoresponse. Nanoscale 10, 3451–3459. https://doi.org/10.1039/C7NR08125A (2018).
Ashraf, I. M. et al. Enhancement in photodetection properties of Ag/CdS/Ag devices through novel rare-earth metal Tb doping. Mater. Lett. 285 https://doi.org/10.1016/j.matlet.2020.129174 (2021).
Raj, I. L. P. et al. Enhancement of photo-sensing properties of cds thin films by changing spray solution volume. Sens. Actuators Phys. 315, 112306. https://doi.org/10.1016/j.sna.2020.112306 (2020).
Shkir, M. et al. A noticeable effect of Pr doping on key optoelectrical properties of cds thin films prepared using spray pyrolysis technique for high-performance photodetector applications. Ceram. Int. 46, 4652–4663. https://doi.org/10.1016/j.ceramint.2019.10.196 (2020).
Shkir, M. et al. Facile fabrication of Ag/Y:CdS/Ag thin films-based photodetectors with enhanced photodetection performance. Sens. Actuators Phys. 331, 112890. https://doi.org/10.1016/j.sna.2021.112890 (2021).
F. Guo, Low Noise, High Detectivity Photodetectors based on Organic Materials, 2014.
H. Wang, Novel Material-Based High-Performance Photodetector for Advanced Applications, 2016.
A.B.G. Trabelsi, K. V. Chandekar, F.H. Alkallas, I.M. Ashraf, J. Hakami, M. Shkir, A. Kaushik, S. AlFaify, A comprehensive study on Co-doped CdS nanostructured films fit for optoelectronic applications, Journal of Materials Research and Technology 21 (2022) 3982–4001. https://doi.org/10.1016/j.jmrt.2022.11.002
B. Deka Boruah, Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors, Nanoscale Adv 1 (2019) 2059–2085. https://doi.org/10.1039/C9NA00130A.
B. Deka Boruah, S. Naidu Majji, S. Nandi, A. Misra, Doping controlled pyro-phototronic effect in self-powered zinc oxide photodetector for enhancement of photoresponse, Nanoscale 10 (2018) 3451–3459. https://doi.org/10.1039/C7NR08125A.
I.M. Ashraf, M.T. Khan, K. Hariprasad, S. Valanarasu, T. Alshahrani, A. Almohammedi, H. Algarni, M. Shkir, S. AlFaify, Enhancement in photodetection properties of Ag/CdS/Ag devices through novel rare-earth metal Tb doping, Mater Lett 285 (2021). https://doi.org/10.1016/j.matlet.2020.129174.
K.D.A. Kumar, P. Mele, S. Golovynskyi, A. Khan, A.M. El-Toni, A.A. Ansari, R.K. Gupta, H. Ghaithan, S. AlFaify, P. Murahari, Insight into Al doping effect on photodetector performance of CdS and CdS:Mg films prepared by self-controlled nebulizer spray technique, J Alloys Compd 892 (2022) 160801. https://doi.org/10.1016/j.jallcom.2021.160801.
I.L.P. Raj, S. Valanarasu, K.H. Prasad, M.S. Revathy, N. Chidhambaram, V. Ganesh, H. Algarni, H.E. Ali, Enhancement of photo-sensing properties of CdS thin films by changing spray solution volume, Sens Actuators A Phys 315 (2020) 112306. https://doi.org/10.1016/j.sna.2020.112306.
Mohd. Shkir, I.M. Ashraf, S. AlFaify, A.M. El-Toni, M. Ahmed, A. Khan, A noticeable effect of Pr doping on key optoelectrical properties of CdS thin films prepared using spray pyrolysis technique for high-performance photodetector applications, Ceram Int 46 (2020) 4652–4663. https://doi.org/10.1016/j.ceramint.2019.10.196.
Mohd. Shkir, Z.R. Khan, K. V. Chandekar, T. Alshahrani, I.M. Ashraf, A. Khan, R. Marnadu, R.A. Zargar, P. Mohanraj, M.S. Revathy, M.A. Manthrammel, M.A. Sayed, H.E. Ali, I.S. Yahia, E.S. Yousef, H. Algarni, S. AlFaify, M.F. Sanaa, Facile fabrication of Ag/Y:CdS/Ag thin films-based photodetectors with enhanced photodetection performance, Sens Actuators A Phys 331 (2021) 112890. https://doi.org/10.1016/j.sna.2021.112890.
Acknowledgements
The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/52/46. The researchers wish to extend their sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah (KSA) for the support provided to the Post-Publishing Program. Also, this research was funded by UAEU _AUA joint program, number 12R248, National water and energy center, United Arab Emirates University.
Funding
This research was funded by KKU through grant number RGP2/52/46, DSP, IUM, and UAEU _AUA under joint program, number 12R248.
Author information
Authors and Affiliations
Contributions
Surayyi Mousa Al Mujamid, T.H. AlAbdulaal, I.M. Ashraf, Ali M. Alshehri, Mohd Taukeer Khan, Sambasivam Sangaraju, Mohd. Shkir: Investigation, Methodology, Conceptualization, Data curation, Formal analysis, Writing – original draft, Funding acquisition, Project administration, Resources, Software, Validation, Visualization, Writing – review & editing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Al Mujamid, S.M., AlAbdulaal, T.H., Ashraf, I.M. et al. Development of Eu-doped CdS photodetectors with enhanced photodetection performance. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34678-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-34678-w