Table 9 Statistical parameters and regression models for FN(G).

From: On machine learning based QSPR analysis of amphetamine derivatives using regression models

Property

Mode

Equation

R

\(R^2\)

\(S_E\)

F

p-value

BP

Quadratic

\(y=271.5008-0.1824x+0.0003x^2\)

0.928

0.861

0.2012

37.1195

0.000

Cubic

\(y=-216.8704+1.5685x-0.0017x^2+0.0000x^3\)

0.943

0.889

1.0736

29.2566

0.000

EV

Quadratic

\(y=58.9171-0.0404x+0.0000x^2\)

0.940

0.884

0.0226

45.6948

0.000

Cubic

\(y=-12.2928+0.2149x-0.0002x^2+0.0000x^3\)

0.961

0.923

0.1099

43.9129

0.000

FP

Quadratic

\(y=160.2920-0.2141x+0.0002x^2\)

0.917

0.841

0.1317

31.8469

0.000

Cubic

\(y=30.9558+0.2495x-0.0003x^2+0.0000x^3\)

0.920

0.847

0.7729

20.2427

0.000

MR

Quadratic

\(y=25.2626+0.0568x-0.0000x^2\)

0.751

0.564

0.0401

7.7554

0.007

Cubic

\(y=-4.9299+0.1651x-0.0001x^2+0.0000x^3\)

0.756

0.572

0.2370

4.9039

0.021

SA

Quadratic

\(y=84.7684-0.2012x+0.0002x^2\)

0.817

0.667

0.1195

12.0094

0.001

Cubic

\(y=116.6979-0.3156x+0.0003x^2-0.0000x^3\)

0.817

0.668

0.7118

7.3658

0.006

P

Quadratic

\(y=9.9888+0.0226x-0.0000x^2\)

0.751

0.564

0.0158

7.7662

0.007

Cubic

\(y=-2.0248+0.0657x-0.0001x^2+0.0000x^3\)

0.757

0.573

0.0935

4.9133

0.021

ST

Quadratic

\(y=41.7226-0.0315x+0.0000x^2\)

0.785

0.616

0.0489

9.6237

0.003

Cubic

\(y=50.1215-0.0616x+0.0001x^2-0.0000x^3\)

0.785

0.616

0.2916

5.8907

0.012

MV

Quadratic

\(y=79.8866+0.2134x-0.0001x^2\)

0.528

0.279

0.1524

2.3248

0.140

Cubic

\(y=-28.2484+0.6011x-0.0005x^2+0.0000x^3\)

0.540

0.292

0.9016

1.5089

0.267