Table 7 5-Fold Cross-Validation Accuracy of All Models on Datasets D1 and D2.

From: An attention enhanced CNN ensemble for interpretable and accurate cotton leaf disease classification

Dataset

Model

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Mean ± SD

D1

SqueezeNet

0.9798

0.9798

0.9714

0.9753

0.9701

0.9753 ± 0.0041

VGG19

0.9740

0.9837

0.9805

0.9798

0.9772

0.9790 ± 0.0033

ResNet101

0.9785

0.9876

0.9798

0.9818

0.9883

0.9832 ± 0.0040

MobileNetV2

0.9824

0.9876

0.9857

0.9863

0.9850

0.9854 ± 0.0017

EfficientNet-B0

0.9922

0.9839

0.9915

0.9883

0.9928

0.9908 ± 0.0018

ShuffleNetV2

0.9902

0.9824

0.9785

0.9850

0.9772

0.9827 ± 0.0047

CottonLeafNet

0.9974

0.9987

0.9928

0.9954

0.9935

0.9956 ± 0.0022

D2

SqueezeNet

0.9881

0.9844

0.9863

0.9909

0.9872

0.9874 ± 0.0021

VGG19

0.9863

0.9918

0.9872

0.9863

0.9881

0.9879 ± 0.0020

ResNet101

0.9918

0.9954

0.9909

0.9927

0.9945

0.9930 ± 0.0017

MobileNetV2

0.9945

0.9954

0.9936

0.9909

0.9936

0.9940 ± 0.0017

EfficientNet-B0

0.9945

0.9936

0.9954

0.9927

0.9945

0.9945 ± 0.0013

ShuffleNetV2

0.9918

0.9881

0.9899

0.9927

0.9963

0.9918 ± 0.0028

CottonLeafNet

1.0000

0.9973

0.9982

0.9982

0.9991

0.9985 ± 0.0009