Table 9 Performance Evaluation and Reliability Metrics for Dataset D1 and D2.

From: An attention enhanced CNN ensemble for interpretable and accurate cotton leaf disease classification

Dataset

Model

Cohen’s

Brier

Accuracy 95% CI

Mean

Mean

Kappa

Score

[Lower, Upper]

PPV

NPV

D1

ShuffleNetV2

0.9550

0.0097

[0.9375, 0.9833]

0.9636

0.9926

SqueezeNet

0.9600

0.0079

[0.9417, 0.9875]

0.9668

0.9933

VGG19

0.9450

0.0103

[0.9250, 0.9792]

0.9548

0.9909

ResNet101

0.9500

0.0099

[0.9333, 0.9833]

0.9608

0.9917

MobileNetV2

0.9550

0.0098

[0.9375, 0.9833]

0.9643

0.9925

EfficientNet-B0

0.9700

0.0082

[0.9542, 0.9918]

0.9760

0.9950

CottonLeafNet

0.9800

0.0051

[0.9667, 0.9958]

0.9838

0.9967

D2

ShuffleNetV2

0.9848

0.0059

[0.9593, 0.9969]

0.9889

0.9962

SqueezeNet

0.9771

0.0073

[0.9600, 1.0000]

0.9838

0.9944

VGG19

0.9619

0.0104

[0.9429, 0.9943]

0.9724

0.9907

ResNet101

0.9771

0.0075

[0.9600, 1.0000]

0.9833

0.9944

MobileNetV2

0.9848

0.0046

[0.9714, 1.0000]

0.9885

0.9962

EfficientNet-B0

0.9848

0.0041

[0.9714, 1.0000]

0.9885

0.9962

CottonLeafNet

0.9924

0.0044

[0.9829, 1.0000]

0.9943

0.9981