Table 5 Classification accuracy of mini-ImageNet dataset for different classification tasks.
Model | Backbone network | 5-way 1-shot | 5-way 5-shot |
|---|---|---|---|
Matching net | Conv | 43.67 | 54.71 |
Relation net | Conv | 50.21 | 64.65 |
MAML | Conv | 49.56 | 56.17 |
Proto net | Conv | 49.26 | 64.78 |
Dynamic | Conv | 56.13 | 72.01 |
GNN | Conv | 50.34 | 65.98 |
TPN | Conv | 55.54 | 69.97 |
EGNN | Conv | – | 75.78 |
CA-EGNN | CA-PFE | 58.34 | 77.39 |