Table 5 Performance comparison between our method and baselines on SIMS Dataset.

From: Multimodal sentiment analysis based on multi-layer feature fusion and multi-task learning

Models

SIMS

 

Acc2

F1-score

MAE

Corr

Acc3

Acc5

EF-\(\hbox {LSTM}^\textrm{a}\)

69.37

56.82

0.599

0.521

54.27

21.23

LF-\(\hbox {DNN}^\textrm{a}\)

78.99

79.72

0.419

0.589

64.99

41.36

\(\hbox {TFN}^\textrm{a}\)

80.31

80.66

0.451

0.581

64.33

36.76

\(\hbox {LMF}^\textrm{a}\)

78.99

78.99

0.442

0.574

66.74

37.86

\(\hbox {MFN}^\textrm{a}\)

79.21

79.15

0.434

0.581

66.08

39.39

Graph-\(\hbox {MFN}^\textrm{a}\)

79.65

80.40

0.477

0.581

67.4

39.17

\(\hbox {MulT}^\textrm{a}\)

79.65

79.94

0.439

0.582

65.86

38.95

\(\hbox {MISA}^\textrm{b}\)

69.37

56.82

0.587

0.113

51.42

20.79

Self-\(\hbox {MM}^*\)

78.77

78.88

0.425

0.591

63.68

39.82

\(\hbox {MMIM}^*\)

73.96

74.59

0.441

0.531

60.61

43.54

Our method

81.56

81.27

0.423

0.583

67.77

45.20

  1. a Is from39.
  2. b Is from52.
  3. Model with * are reproduced from the open-source code provided in original papers. For all metrics except MAE, higher values indicate better performance.
  4. Significant values are in bold.