Table 2 Experimental results of comparing methods in term of the MAE, SM, \(F_\beta\) and \(E_\epsilon\), where the best result in each column is marked in boldface. Note: \(\uparrow\) and \(\downarrow\) indicate that larger is better and smaller is better, respectively.

From: Triple-attentions based salient object detector for strip steel surface defects

Methods

\(\rho =0\)

\(\rho =10\%\)

\(\rho =20\%\)

MAE\(\downarrow\)

\(F_\beta\)\(\uparrow\)

\(E_\epsilon\)\(\uparrow\)

SM\(\uparrow\)

MAE\(\downarrow\)

\(F_\beta\)\(\uparrow\)

\(E_\epsilon\)\(\uparrow\)

SM\(\uparrow\)

MAE\(\downarrow\)

\(F_\beta\)\(\uparrow\)

\(E_\epsilon\)\(\uparrow\)

SM\(\uparrow\)

2LSG22

0.2474

0.3892

0.561

0.5516

0.2587

0.3694

0.543

0.5367

0.2619

0.3597

0.5371

0.5336

BASNet26

0.0152

0.9083

0.9691

0.9284

0.016

0.9021

0.9675

0.924

0.016

0.9007

0.9678

0.9234

BC16

0.1554

0.4296

0.6455

0.5943

0.1519

0.4184

0.6231

0.5882

0.1753

0.3739

0.6103

0.5624

BMPM52

0.0299

0.8482

0.901

0.8586

0.0496

0.6587

0.8003

0.7449

0.0524

0.6348

0.7727

0.7337

CPD21

0.0211

0.8746

0.9393

0.9039

0.0353

0.7828

0.8864

0.831

0.0324

0.7876

0.8925

0.8384

DACNet2

0.0118

0.925

0.9773

0.9428

0.0125

0.9223

0.9762

0.9378

0.0144

0.9111

0.9679

0.9246

DSS19

0.0239

0.8088

0.855

0.8244

0.0453

0.6292

0.7339

0.7218

0.0432

0.6028

0.6972

0.7131

EDRNet12

0.013

0.9204

0.9754

0.9381

0.0139

0.9098

0.9725

0.9304

0.0146

0.9043

0.9701

0.9253

\(\hbox {F}^3\)Net53

0.015

0.9088

0.9719

0.9216

0.0265

0.8194

0.9344

0.852

0.0276

0.8064

0.9233

0.8454

ITSD54

0.0153

0.8968

0.9691

0.9248

0.0244

0.8239

0.9428

0.8656

0.0262

0.8099

0.9293

0.859

MIL18

0.1824

0.4513

0.6017

0.6186

0.2128

0.374

0.546

0.5685

0.2083

0.3785

0.5461

0.577

MINet55

0.0144

0.9049

0.967

0.9242

0.0276

0.8065

0.9313

0.8535

0.0234

0.8409

0.9382

0.8716

NLDF56

0.0484

0.704

0.8075

0.803

0.1171

0.439

0.6542

0.6345

0.1244

0.3683

0.5904

0.5893

PFANet23

0.0848

0.5924

0.7478

0.7412

0.1011

0.5246

0.716

0.6958

0.1075

0.485

0.6591

0.6778

PiCANet24

0.0263

0.8325

0.9237

0.8968

0.0355

0.7683

0.8879

0.8499

0.0404

0.7256

0.8616

0.823

PoolNet25

0.0215

0.8512

0.9347

0.9031

0.0345

0.7451

0.8752

0.8215

0.0372

0.7179

0.8581

0.8104

\(\hbox {R}^3\)Net20

0.0255

0.8315

0.9071

0.8395

0.0382

0.7225

0.8342

0.7665

0.043

0.6461

0.7557

0.7271

RCRR57

0.2439

0.343

0.5493

0.5343

0.2552

0.3264

0.5279

0.5303

0.2842

0.3081

0.5133

0.5146

SAMNet58

0.0218

0.8631

0.94

0.9064

0.0229

0.8514

0.9357

0.8987

0.0235

0.845

0.9334

0.8948

SMD17

0.2045

0.4268

0.5934

0.5843

0.1994

0.4212

0.5904

0.5846

0.1981

0.3973

0.5775

0.5718

Ours

0.0091

0.94

0.9846

0.9506

0.0091

0.94

0.9846

0.9506

0.0123

0.9163

0.9763

0.9315