Table 3 Performance metrics of the models on the training and test set.

From: A machine learning-based model for predicting the risk of cognitive frailty in elderly patients on maintenance hemodialysis

Models

AUC(95% CI)

Accuracy(95% CI)

Precision (95% CI)

Recall (95% CI)

F1 Score(95% CI)

LR Test

0.858 (0.8213, 0.8919)

0.73 (0.6997, 0.7593)

0.974 (0.9603, 0.986)

0.703 (0.6706, 0.738)

0.816 (0.7938, 0.8391)

LR Train

0.874 (0.8165, 0.9234)

0.758 (0.7063, 0.8104)

0.961 (0.9308, 0.9839)

0.75 (0.6936, 0.8034)

0.843 (0.8039, 0.8787)

NNET Test

0.866 (0.8045, 0.9232)

0.881 (0.8401, 0.9182)

0.891 (0.8498, 0.9263)

0.983 (0.9646, 0.9958)

0.934 (0.9098, 0.9558)

NNET Train

0.986 (0.9999, 1.0)

0.893 (0.8722, 0.9143)

0.983 (0.9723, 0.9913)

0.902 (0.8795, 0.9235)

0.94 (0.9275, 0.9526)

RF Test

0.844 (0.7722, 0.9069)

0.862 (0.8215, 0.9033)

0.865 (0.8246, 0.9063)

0.996 (0.9863, 1.0)

0.926 (0.902, 0.949)

RF Train

0.986 (0.95, 0.993)

0.867 (0.8436, 0.8895)

0.998 (0.9956, 1.0)

0.867 (0.8427, 0.8894)

0.928 (0.914, 0.941)

SVM Test

0.87 (0.8124, 0.9188)

0.818 (0.7732, 0.8661)

0.946 (0.9132, 0.9754)

0.836 (0.7885, 0.8844)

0.888 (0.8564, 0.9199)

SVM Train

0.986 (0.9999, 1.0)

0.769 (0.7406, 0.799)

0.765 (0.7353, 0.7973)

0.956 (0.9388, 0.9722)

0.85 (0.8299, 0.8718)

XGBoost Test

0.896 (0.8416, 0.941)

0.896 (0.855, 0.9293)

0.898 (0.8588, 0.9328)

0.991 (0.9781, 1.0)

0.943 (0.9195, 0.9622)

XGBoost Train

0.986 (0.9999, 1.0)

0.909 (0.8895, 0.928)

0.993 (0.9854, 0.9985)

0.91 (0.8888, 0.93)

0.949 (0.9378, 0.9604)

Stacking Test

0.911 (0.8653, 0.9494)

0.903 (0.8661, 0.9368)

0.912 (0.877, 0.9444)

0.983 (0.9646, 0.9957)

0.946 (0.9237, 0.965)

Stacking Train

0.986 (0.9999, 1.0)

0.916 (0.8945, 0.9342)

0.988 (0.9797, 0.9956)

0.919 (0.8981, 0.9388)

0.952 (0.9406, 0.9633)