Table 1 Notation and formulas of the reverse degree based indices.

From: Modeling and estimation of physiochemical properties of cancer drugs using entropy measures

Name of Index

Notation

Formula

Formula expansion

Randić \(\alpha =-1, \frac{-1}{2}, 1, \frac{1}{2}\)

\(R_{\alpha }(Z)\)

\(\sum _{rs\in E (Z)} \mathscr {F}_{ R_{\alpha }}(rs)\)

\(\sum _{rs\in E (Z)} ({\Upsilon }_r\times {\Upsilon }_s)^\alpha\)

Atom bond connectivity

ABC(Z)

\(\sum _{rs\in E (Z)} \mathscr {F}_{ABC}(rs)\)

\(\sum _{rs\in E (Z)}\sqrt{\frac{{\Upsilon }_r+{\Upsilon }_s-2}{{\Upsilon }_r\times {\Upsilon }_s}}\)

Geometric arithmetic

GA(Z)

\(\sum _{rs\in E (Z)} \mathscr {F}_{GA}(rs)\)

\(\sum _{rs\in E (Z)} \frac{2\sqrt{{{\Upsilon }_r\times {\Upsilon }_s}}}{{{\Upsilon }_r+ {\Upsilon }_s}}\)

First Zagreb

\(M_1 (Z)\)

\(\sum _{rs\in E (Z)} \mathscr {F}_{M_1}(rs)\)

\(\sum _{rs\in E (Z)}({\Upsilon }_r+{\Upsilon }_s)\)

Second Zagreb

\(M_2 (Z)\)

\(\sum _{rs\in E (Z)} \mathscr {F}_{M_2}(rs)\)

\(\sum _{rs\in E (Z)}({\Upsilon }_r\times {\Upsilon }_s)\)

Hyper Zagreb

HM(Z)

\(\sum _{rs\in E (Z)} \mathscr {F}_{HM}(rs)\)

\(\sum _{rs\in E (Z)}({\Upsilon }_r+{\Upsilon }_s)^2\)

Forgotten

F(Z)

\(\sum _{rs\in E (Z)} \mathscr {F}_{F}(rs)\)

\(\sum _{rs\in E (Z)}[({\Upsilon }_r)^2+({\Upsilon }_s)^2]\)

Augmented Zagreb

AZI(Z)

\(\sum _{rs\in E (Z)} \mathscr {F}_{AZI}(rs)\)

\(\sum _{rs\in E (Z)} (\frac{{\Upsilon }_r\times {\Upsilon }_s}{{\Upsilon }_r+ {\Upsilon }_s-2})^3\)

Balaban

J(Z)

\(\sum _{rs\in E (Z)} \mathscr {F}_{J}(rs)\)

\(\sum _{rs\in E (Z)} (\frac{q}{q-p+2}\times \frac{1}{\sqrt{{\Upsilon }_r\times {\Upsilon }_s}})\)

Redefined first Zagreb

\(ReZG_1 (Z)\)

\(\sum _{rs\in E (Z)} \mathscr {F}_{ReZG_1}(rs)\)

\(\sum _{rs\in E (Z)}\frac{{\Upsilon }_r+{\Upsilon }_s}{{\Upsilon }_r\times {\Upsilon }_s}\)

Redefined second Zagreb

\(ReZG_2 (Z)\)

\(\sum _{rs\in E (Z)} \mathscr {F}_{ReZG_2}(rs)\)

\(\sum _{rs\in E (Z)}\frac{{\Upsilon }_r\times {\Upsilon }_s}{{\Upsilon }_r+{\Upsilon }_s}\)

Redefined third Zagreb

\(ReZG_3 (Z)\)

\(\sum _{rs\in E (Z)} \mathscr {F}_{ReZG_3}(rs)\)

\(\sum _{rs\in E (Z)}({\Upsilon }_r\times {\Upsilon }_s)({\Upsilon }_r+ {\Upsilon }_s)\)