Table 2 Comparative analysis of predicting different feature combinations under different machine learning algorithms.
| Â | Lr | Gbr | Dtr | Rfr | Knnr | Svr | |
|---|---|---|---|---|---|---|---|
MT + Co | R2 | 0.8984 | 0.8468 | 0.8357 | 0.8626 | 0.8604 | 0.9031 |
RMSE | 0.1416 | 0.1739 | 0.1801 | 0.1647 | 0.166 | 0.1383 | |
MSE | 0.0201 | 0.0302 | 0.0324 | 0.0271 | 0.0276 | 0.0191 | |
MAE | 0.0609 | 0.0936 | 0.095 | 0.0808 | 0.0914 | 0.0753 | |
MT + Pa | R2 | 0.9085 | 0.883 | 0.8617 | 0.8895 | 0.8866 | 0.8963 |
RMSE | 0.1344 | 0.1519 | 0.1652 | 0.1477 | 0.1496 | 0.1431 | |
MSE | 0.1807 | 0.0231 | 0.0273 | 0.0218 | 0.0224 | 0.0205 | |
MAE | 0.0629 | 0.0757 | 0.0801 | 0.0696 | 0.089 | 0.0784 | |
Co + Pa | R2 | 0.4453 | 0.2538 | -0.3847 | 0.2206 | 0.3416 | 0.4033 |
RMSE | 0.3309 | 0.3838 | 0.5228 | 0.3922 | 0.3605 | 0.3432 | |
MSE | 0.1095 | 0.1473 | 0.2733 | 0.1538 | 0.13 | 0.1178 | |
MAE | 0.2482 | 0.2792 | 0.384 | 0.2853 | 0.2594 | 0.2445 | |
MT + Co + Pa + SS | R2 | 0.9119 | 0.8694 | 0.819 | 0.8761 | 0.8352 | 0.9022 |
RMSE | 0.1319 | 0.1605 | 0.189 | 0.1564 | 0.1804 | 0.134 | |
MSE | 0.0174 | 0.0258 | 0.0357 | 0.0244 | 0.0325 | 0.0193 | |
MAE | 0.0638 | 0.083 | 0.0814 | 0.0718 | 0.1274 | 0.084 | |
MT + Co + Pa + PC | R2 | 0.9098 | 0.8918 | 0.8196 | 0.8727 | 0.8488 | 0.8895 |
RMSE | 0.1334 | 0.1462 | 0.1887 | 0.1569 | 0.1728 | 0.1477 | |
MSE | 0.0178 | 0.0214 | 0.0356 | 0.0246 | 0.0299 | 0.0218 | |
MAE | 0.0624 | 0.0799 | 0.0801 | 0.0725 | 0.1185 | 0.0872 | |
MT + Co + Pa + SS + PC | R2 | 0.9114 | 0.8757 | 0.8598 | 0.8721 | 0.7915 | 0.8888 |
RMSE | 0.1322 | 0.1566 | 0.1663 | 0.1589 | 0.2029 | 0.1482 | |
MSE | 0.0175 | 0.0245 | 0.0277 | 0.0253 | 0.0411 | 0.022 | |
MAE | 0.0639 | 0.0853 | 0.0821 | 0.0732 | 0.161 | 0.09 | |
MT + Co + Pa | R2 | 0.9103 | 0.8839 | 0.8556 | 0.8809 | 0.8486 | 0.9117 |
RMSE | 0.1331 | 0.1514 | 0.1688 | 0.1533 | 0.1729 | 0.132 | |
MSE | 0.0177 | 0.0229 | 0.0285 | 0.0235 | 0.0299 | 0.0174 | |
MAE | 0.0618 | 0.08 | 0.0834 | 0.0725 | 0.104 | 0.074 | |