Table 1 2D-CNN model layers and parameters.

From: ECG heartbeat classification using progressive moving average transform

No.

Layer name

Kernal size

Filter

Padding

Stride

Output shape

1

\(\hbox {Input}^a\)

\(120\times 120\times 1\)

2

Conv2D

\(5\times 5\)

32

0

1

\(116\times 116\times 32\)

3

BatchNorm2d

\(116\times 116\times 32\)

4

ReLU

\(116\times 116\times 32\)

5

MaxPool2D

\(5\times 5\)

5

\(23\times 23\times 32\)

6

Conv2D

\(5\times 5\)

64

0

1

\(19\times 19\times 64\)

7

BatchNorm2d

\(19\times 19\times 64\)

8

ReLU

\(19\times 19\times 64\)

9

MaxPool2D

\(3\times 3\)

3

\(6\times 6\times 64\)

10

Conv2D

\(3\times 3\)

128

0

1

\(4\times 4\times 128\)

11

BatchNorm2d

\(4\times 4\times 128\)

12

ReLU

\(4\times 4\times 128\)

13

AMaxPool2\(\hbox {d}^b\)

\(1\times 1\times 128\)

14

Flatten

\(1\times 128\)

15

Flatten

\(1\times 128\)

16

Flatten

\(1\times 64\)

17

Flatten

\(1\times 3\)

  1. \(^{\text {a}}\)The input refers to the PMAT transformed heartbeat of size \(120\times 120\), \(^{\text {b}}\) AMaxPool2d is the Adaptive Max Pooling layer