Table 3 A comparison of the proposed scheme and related works applied to the SEED dataset and SEED-IV dataset.

From: Multi-branch convolutional neural network with cross-attention mechanism for emotion recognition

Authors

Year

Method

Feature

SEED(Acc/STD)

SEED-IV(Acc/STD)

Zheng et al.34

2017

GSCCA

Raw Data

82.96/09.95

69.08/16.66

Xiang et al.35

2018

SVM

\(\textrm{NDSF}^{1}\)

83.30/09.72

56.61/20.05

Li et al.36

2018

BiDANN

Raw Data

83.28/09.60

70.29/12.63

Song et al.37

2018

DGCNN

Differential entropy

79.95/09.02

52.82/09.23

Song et al.38

2019

A-LSTM

Differential entropy

72.18/10.85

55.03/09.28

Zhong et al.39

2020

RGNN

Raw Data

85.30/06.72

73.84/08.02

Li et al.40

2020

MS-STM

Differential entropy

84.00/08.30

67.73/13.15

Li et al.41

2020

Bi-HDM

Differential entropy

85.40/07.53

69.03/08.66

Li et al.42

2021

TANN

Differential entropy

84.41/08.75

68.00/08.35

Song et al.43

2021

GECNN

Differential entropy

82.46/N/A

61.58/N/A

Li et al.44

2022

GMSS

Raw Data

86.52/06.22

73.48/07.41

Zhou et al.45

2022

PR-PL

Differential entropy

85.56/04.78

74.92/07.92

Proposed scheme

2024

MCNN-CA

TDF+DE+TFDF

80.85/10.01

71.33/05.21

Proposed scheme

2024

MCNN-CA

TDF+PSD+TFDF

79.03/13.21

69.04/12.01

Proposed scheme

2024

MCNN-CA

PSD+DE+TFDF

85.85/06.01

73.50/06.06

  1. \(^\text {1}\)NDSF: Non-linear dynamical system features