Table 2 Hyperparameter and penalty for classifiers.

From: Robust machine learning based Intrusion detection system using simple statistical techniques in feature selection

Classifier

Hyperparameters

LR

C = 0.03, Solver = “lbfgs”

LDA

Solver = eigen, Shrinkage= “Ledoit-Wolf “

NB

var_smoothing = 0.05336699,alpha = 0.78

DT

criterion=”GINI”, max_depth = 3,maxfeatures = sqrt

RF

criterion=”GINI”, max_depth = 5,

maxfeatures = sqrt, n_estimators = 1000

SVM

C = 0.09,gamma = 0.01

GBM

learning_rate = 0.1,max_depth = 7,n_estimators = 10