Table 10 CIFHWG operator.

From: Circular intuitionistic fuzzy Hamacher aggregation operators for multi-attribute decision-making

 

\(S\)

\(F\)

\(R\)

\(U\)

\(P{S}_{1}\)

\(\left[\begin{array}{c}0.2121,\\ 0.4765;\\ 0.5098\end{array}\right]\)

\(\left[\begin{array}{c}0.1896,\\ 0.1233;\\ 0.1235\end{array}\right]\)

\(\left[\begin{array}{c}0.2742,\\ 0.3964;\\ 0.5456\end{array}\right]\)

\(\left[\begin{array}{c}0.1781,\\ 0.1396;\\ 0.5789\end{array}\right]\)

\(P{S}_{2}\)

\(\left[\begin{array}{c}0.1123,\\ 0.3091;\\ 0.5098\end{array}\right]\)

\(\left[\begin{array}{c}0.4562,\\ 0.1234;\\ 0.1253\end{array}\right]\)

\(\left[\begin{array}{c}0.2741,\\ 0.3451;\\ 0.3123\end{array}\right]\)

\(\left[\begin{array}{c}0.2741,\\ 0.2853;\\ 0.3967\end{array}\right]\)

\(P{S}_{3}\)

\(\left[\begin{array}{c}0.2084,\\ 0.4564;\\ 0.5098\end{array}\right]\)

\(\left[\begin{array}{c}0.1854,\\ 0.3894;\\ 0.5125\end{array}\right]\)

\(\left[\begin{array}{c}0.1742,\\ 0.1854;\\ 0.5123\end{array}\right]\)

\(\left[\begin{array}{c}0.2781,\\ 0.3453;\\ 0.5963\end{array}\right]\)

\(P{S}_{4}\)

\(\left[\begin{array}{c}0.4982,\\ 0.4064;\\ 0.5098\end{array}\right]\)

\(\left[\begin{array}{c}0.4741,\\ 0.4453;\\ 0.5856\end{array}\right]\)

\(\left[\begin{array}{c}0.2742,\\ 0.3964;\\ 0.5741\end{array}\right]\)

\(\left[\begin{array}{c}0.5781,\\ 0.5963;\\ 0.5123\end{array}\right]\)