Table 1 Results for setting A (fully linear in \({{\,\mathrm{\textrm{ilr}}\,}}(X)\)). Bold values indicate the lowest OOS MSE resp. β-MSE in the corresponding dimension scenario.

From: Instrumental variable estimation for compositional treatments

  

Setting A, Equation (5)

Dim.

Method

OOS MSE

\(\beta\)-MSE

FZ

FNZ

\(p=3\) \(q=2\)

DIR+LC

\(0.58\) \(\pm 0.08\)

\(1.6\) \(\pm 0.17\)

0.0

0.0

ILR+LC\(^{\dagger }\)

\(\varvec{0.37}\) \(\pm 0.07\)

\(\mathbf {1.1}\) \(\pm 0.15\)

0.0

0.0

KIVILR

\(\varvec{0.37}\) \(\pm 0.07\)

Only LC

\(15.03\) \(\pm 0.20\)

\(32.6\) \(\pm 0.14\)

0.0

0.0

2SLS

\(>200\)

\(>5\)k

0.0

0.0

\(p=30\) \(q=10\)

ILR+LC

\(\varvec{0.42}\) \(\pm 0.08\)

\(\varvec{0.22}\) \(\pm 0.01\)

0.0

12.0

KIVILR

\(240.6\) \(\pm 35.7\)

Only LC

\(24.4\) \(\pm 0.37\)

\(1.9\) \(\pm 0.00\)

0.0

12.3

\(p=250\) \(q=10\)

ILR+LC

\(\varvec{0.67}\) \(\pm 0.14\)

\(\varvec{0.22}\) \(\pm 0.02\)

0.0

0.0

KIVILR

\(5060.5\) \(\pm 1196.2\)

Only LC

\(30.8\) \(\pm 0.48\)

\(143.3\) \(\pm 0.27\)

3.0

1.0

  1. \(^{\dagger }\) Identical to 2SLSILR in low-dimensional setting without sparsity