Table 1 Structure transitions of compressed Gold below room temperature predicted by previous DFT calculations using pseudopotential (PP), full-potential (FP), spin-orbit coupling (SO), all-electron linear combinations of Gaussian-type orbitals-fitting-function (LCGTO-FF), linear augmented plane wave (LAPW), and the machine learning accelerated canonical sampling (MLACS) methods with LDA and GGA XC functionals.

From: Lattice stability of ultrafast-heated gold

References

Structure transitions

Transition pressure (GPa)

DFT-method (XC)

29

fcc\(\rightarrow\)dhcp\(\rightarrow\)hcp

250, >600

PP-PAW (LDA)

57

fcc\(\rightarrow\)ABCACB\(\rightarrow\)dhcp\(\rightarrow\)hcp

620, 650, 780

PP-PAW (LDA)

 

fcc\(\rightarrow\)ABCACB\(\rightarrow\)hcp

220, 480

FLAPW+lo (LDA)

50

fcc\(\rightarrow\)hcp

241

FP-LMTO (LDA)

 

fcc\(\rightarrow\)hcp

200

FP-LMTO (GGA)

51

fcc\(\rightarrow\)hcp\(\rightarrow\)bcc

151, 400

FP-LMTO+SO (GGA)

34

fcc\(\rightarrow\)hcp

350

LCGTO-FF (LDA)

 

fcc\(\rightarrow\)hcp

410

LCGTO-FF (GGA)

37

fcc\(\rightarrow\)hcp\(\rightarrow\)bcc

255, 475

FP-LMTO (LDA)

 

fcc\(\rightarrow\)hcp\(\rightarrow\)bcc

240, 505

FP-LMTO (GGA)

 

fcc\(\rightarrow\)hcp\(\rightarrow\)bcc

200, 520

FP-LMTO+SO (GGA)

45

fcc\(\rightarrow\)hcp\(\rightarrow\)bcc

500, 1000

PP-PAW(LDA)+(MLACS)

Present work

fcc\(\rightarrow\)hcp\(\rightarrow\)bcc

175, 384

PP-PAW (GGA)