Table 1 Performance for discriminating other respiratory sounds from wheezing.
Models | Selected hyper-parameters with grid search | Accuracy | AUC | Precision | Recall | F1-score |
|---|---|---|---|---|---|---|
Primary study results(ResNet34 + CBAM) | Epoch: 120 / Batch Size: 32 / Learning Rate: 1e-3 | 0.912 | 0.891 | 0.944 | 0.810 | 0.872 |
AST model using primary study data | Epoch: 100 / Batch Size: 16 / Learning Rate: 1e-4 | 0.930 | 0.944 | 0.840 | 1.000 | 0.913 |
ResNet34 + CBAM of follow-up study data | Epoch: 120 / Batch Size: 32 / Learning Rate: 1e-3 | 0.836 | 0.758 | 0.742 | 0.590 | 0.657 |
AST model using follow-up study data | Epoch: 150 / Batch Size: 10 / Learning Rate: 5e-6 | 0.911 | 0.866 | 0.882 | 0.769 | 0.822 |