Table 3 Comparison of efficiency with state-of-the-art methods on the datasets of MOT2015 and MOT2016.
Model | Datasets | |||||||
|---|---|---|---|---|---|---|---|---|
MOT2015 | MOT2016 | |||||||
Parameters(M) | Flops(G) | Inference Time(ms) | Trainning Time(s) | Parameters(M) | Flops(G) | Inference Time(ms) | Trainning Time(s) | |
KFC29 | 534.94 | 5.12 | 8.92 | 580.34 | 497.03 | 5.88 | 9.33 | 552.09 |
Shay et al.30 | 682.34 | 8.68 | 11.97 | 741.60 | 687.97 | 7.74 | 10.69 | 659.83 |
Yong et al.31 | 786.95 | 5.87 | 7.97 | 735.75 | 753.00 | 7.51 | 7.96 | 409.45 |
Fang et al.32 | 612.04 | 8.15 | 10.38 | 718.84 | 703.20 | 8.53 | 13.04 | 666.87 |
HDT network33 | 427.95 | 5.16 | 7.17 | 433.39 | 411.39 | 5.09 | 6.75 | 489.33 |
L-YOLOv434 | 339.64 | 3.55 | 5.35 | 325.12 | 317.18 | 3.66 | 5.60 | 335.62 |
Ours | 336.61 | 3.53 | 5.34 | 321.37 | 310.79 | 3.36 | 5.12 | 329.26 |