Table 4 Evaluation metric of DBAR_Net and transfer learning model.

From: An attention enhanced dilated bottleneck network for kidney disease classification

Model

Kidney class

Precision

Recall

F1-score

Accuracy (%)

VGG16

Cyst

0.81

0.75

0.78

97.50

Stone

0.85

0.57

0.68

Kidney

0.56

0.98

0.72

Tumor

0.98

0.67

0.78

VGG19

Cyst

0.98

0.99

0.98

97.44

Stone

0.97

0.94

0.96

Kidney

0.97

0.97

0.97

Tumor

0.97

0.98

0.98

ResNet50

Cyst

0.98

0.98

0.98

96.90

Stone

0.96

0.94

0.95

Kidney

0.95

0.96

0.96

Tumor

0.97

0.98

0.98

Xception

Cyst

0.98

0.98

0.98

97.26

Stone

0.97

0.94

0.95

Kidney

0.96

0.97

0.97

Tumor

0.97

0.98

0.98

Mobile Net

Cyst

0.99

0.98

0.98

97.22

Stone

0.98

0.95

0.96

Kidney

0.97

0.98

0.98

Tumor

0.98

0.99

0.98

InceptionV3

Cyst

0.99

0.97

0.98

96.90

Stone

0.96

0.93

0.94

Kidney

0.95

0.97

0.96

Tumor

0.97

0.98

0.98

EfficientNetB0

Cyst

0.96

0.99

0.97

97.26

Stone

0.98

0.94

0.96

Kidney

0.97

0.98

0.97

Tumor

0.98

0.98

0.98

Proposed DBAR_Net

Cyst

0.98

0.98

0.98

98.86

Stone

0.98

0.94

0.96

Kidney

0.96

0.97

0.96

Tumor

0.97

0.98

0.97