Table 13 Results of classifiers (in %) with Dispersion Ratio.

From: An extensive experimental analysis for heart disease prediction using artificial intelligence techniques

Classifier

Training accuracy

Testing accuracy

Precision

Sensitivity

Specificity

F1 score

AUC

LR

80.7

80.3

80

85

75

83

87

DT

87.6

82.4

79

93

63

85

91

RF

88.6

85.3

85

89

80

87

93

KNN

78.8

71.4

75

72

71

73

76

SVM

80.9

81.9

83

85

79

84

87

GNB

81.5

79.8

82

81

79

82

87

XGBoost

100

91.2

92

92

91

92

96

AdaBoost

86.7

83.6

85

86

81

85

90

SGD

74.7

72.1

84

62

86

71

75

GB

99.1

89.9

90

92

87

91

96

ETC

86.1

84

84

88

79

86

91

CatBoost

87.4

84.5

96

75

96

84

95

LightGBM

95.3

86.1

95

79

94

86

96

MLP

71

67.6

64

94

33

77

85

RNN

87.4

83.6

92

55

94

69

75

LSTM

86.7

83.2

91

62

93

74

77

GRU

87.4

84

92

63

94

75

78

Bi-LSTM

87.4

81.1

94

66

94

77

80

Bi-GRU

82.4

83.2

94

66

94

77

80

CNN

86.3

85.9

94

69

95

79

82

Hybrid Model

100

100

100

100

100

100

100

  1. Significant values are in [bold].