Table 3 Comparisons of different state-of-the-art machine learning models’ performance vs. the proposed model’s performance based on different test data percentages.

From: Early prediction of intraventricular hemorrhage in very low birth weight infants using deep neural networks with attention in low-resource settings

Model name

Test data percentage

Precision

Recall

F1 score

Accuracy

Specificity

FPR

FNR

MCC

Marked-ness

Naïve Bayes

10%

0.752

0.743

0.740

0.743

0.63

0.36

0.70

0.49

0.50

20%

0.759

0.743

0.738

0.743

0.60

0.39

0.12

0.50

0.52

30%

0.803

0.784

0.779

0.784

0.64

0.35

0.08

0.58

0.61

40%

0.799

0.780

0.775

0.780

0.64

0.36

0.08

0.57

0.60

Logistic regression

10%

0.752

0.743

0.740

0.743

0.63

0.36

0.15

0.49

0.50

20%

0.748

0.730

0.724

0.730

0.57

0.42

0.12

0.47

0.50

30%

0.809

0.784

0.778

0.784

0.62

0.37

0.06

0.59

0.62

40%

0.808

0.780

0.774

0.780

0.62

0.37

0.06

0.59

0.62

XGBoost

10%

0.715

0.715

0.715

0.710

0.73

0.26

0.30

0.43

0.43

20%

0.719

0.717

0.719

0.717

0.65

0.34

0.22

0.43

0.43

30%

0.785

0.775

0.774

0.775

0.69

0.30

0.15

0.55

0.56

40%

0.768

0.767

0.767

0.767

0.73

0.26

0.21

0.53

0.53

Decision tree

10%

0.672

0.666

0.665

0.666

0.68

0.31

0.30

0.68

0.38

20%

0.737

0.737

0.737

0.737

0.71

0.28

0.25

0.46

0.46

30%

0.733

0.733

0.733

0.733

0.73

0.26

0.26

0.46

0.46

40%

0.751

0.748

0.748

0.748

0.78

0.21

0.28

0.49

0.50

SVM

10%

0.824

0.794

0.789

0.794

0.63

0.36

0.05

0.61

0.65

20%

0.824

0.794

0.782

0.794

0.63

0.36

0.35

0.61

0.65

30%

0.845

0.801

0.793

0.801

0.60

0.39

0.01

0.64

0.69

40%

0.847

0.800

0.791

0.800

0.60

0.40

0.01

0.64

0.70

DNN-A

10%

0.867

0.820

0.810

0.820

0.63

0.36

0.00

0.68

0.74

20%

0.845

0.807

0.801

0.807

0.63

0.36

0.02

0.64

0.69

30%

0.896

0.876

0.861

0.871

0.71

0.28

0.00

0.75

0.78

40%

0.836

0.815

0.816

0.819

0.69

0.30

0.06

0.65

0.67

  1. FPR false positive rate, FNR false negative rate, MCC Matthew correlation coefficient, FPR false positive rate, FNR false negative rate, MCC Matthew correlation coefficient, SVM support vector machine, DNN-A deep neural network-based model with an attention mechanism.