Table 4 Classification performance of different methodologies on the HU dataset.

From: Fusion of circulant singular spectrum analysis and multiscale local ternary patterns for effective spectral-spatial feature extraction and small sample hyperspectral image classification

Class

SVM

LPP_LBP_BLS

SSSKRR

MSF-PCs

SSFTT

CVSSN

AMS-M2ESL

MASSFormer

CiSSA_MLTP

1

\(89.97\pm 2.00\)

\(63.94\pm 6.77\)

\(92.80\pm 5.14\)

\(87.87\pm 1.17\)

\(94.16\pm 3.56\)

\(84.39\pm 7.22\)

\(87.44\pm 0.32\)

\({\varvec {96.26}}\pm {\varvec {0.94}}\)

\(93.99\pm 0.29\)

2

\(90.26\pm 8.11\)

\(58.15\pm 7.73\)

\(95.00\pm 2.49\)

\(96.07\pm 1.38\)

\(94.38\pm 1.08\)

\(88.49\pm 3.55\)

\({\varvec {96.91}}\pm {\varvec {1.24}}\)

\(93.28\pm 2.71\)

\(93.07\pm 1.98\)

3

\(99.42\pm 1.00\)

\(92.52\pm 6.74\)

\(95.10\pm 3.47\)

\({\varvec {100.0}}\pm {\varvec {0.00}}\)

\(99.74\pm 0.37\)

\(95.07\pm 2.25\)

\({\varvec {100.0}}\pm {\varvec {0.00}}\)

\(98.97\pm 1.88\)

\(98.97\pm 0.48\)

4

\(96.24\pm 3.06\)

\(59.97\pm 4.80\)

\(89.44\pm 5.12\)

\(94.77\pm 0.23\)

\(94.89\pm 1.31\)

\(88.49\pm 3.88\)

\(94.41\pm 0.56\)

\({\varvec {96.40}}\pm {\varvec {1.35}}\)

\(94.80\pm 1.17\)

5

\(91.19\pm 2.63\)

\(88.61\pm 4.97\)

\(95.85\pm 3.44\)

\({\varvec {100.0}}\pm {\varvec {0.00}}\)

\(92.30\pm 2.50\)

\(90.85\pm 1.25\)

\(94.37\pm 3.39\)

\(92.30\pm 1.41\)

\(95.28\pm 0.73\)

6

\(97.88\pm 4.15\)

\(84.42\pm 6.77\)

\(56.01\pm 6.78\)

\(88.79\pm 0.24\)

\({\varvec {100.0}}\pm {\varvec {0.00}}\)

\(82.10\pm 6.64\)

\({\varvec {100.0}}\pm {\varvec {0.00}}\)

\({\varvec {100.0}}\pm {\varvec {0.00}}\)

\(98.26\pm 0.81\)

7

\(77.24\pm 4.98\)

\(69.05\pm 4.30\)

\(78.44\pm 5.52\)

\({\varvec {97.99}}\pm {\varvec {0.68}}\)

\(84.91\pm 5.07\)

\(80.83\pm 1.73\)

\(92.71\pm 0.75\)

\(84.86\pm 3.68\)

\(92.63\pm 2.74\)

8

\(66.95\pm 6.15\)

\(59.58\pm 4.08\)

\(54.05\pm 5.10\)

\(55.86\pm 5.10\)

\({\varvec {95.75}}\pm {\varvec {4.51}}\)

\(74.83\pm 3.17\)

\(93.04\pm 3.34\)

\(89.66\pm 3.38\)

\(93.30\pm 2.05\)

9

\(65.17\pm 6.68\)

\(47.47\pm 6.32\)

\(81.86\pm 3.73\)

\(86.21\pm 1.49\)

\(89.40\pm 3.69\)

\({\varvec {90.47}}\pm {\varvec {3.21}}\)

\(81.75\pm 2.08\)

\(87.23\pm 5.49\)

\(88.41\pm 3.08\)

10

\(65.03\pm 4.83\)

\(91.17\pm 7.51\)

\(90.56\pm 9.20\)

\({\varvec {97.25}}\pm {\varvec {0.87}}\)

\(83.47\pm 2.96\)

\(78.33\pm 4.44\)

\(88.23\pm 4.21\)

\(85.73\pm 2.41\)

\(89.16\pm 1.69\)

11

\(57.10\pm 2.11\)

\(80.46\pm 5.43\)

\(86.96\pm 3.12\)

\(88.15\pm 0.64\)

\(86.26\pm 3.41\)

\(81.99\pm 4.18\)

\(82.25\pm 0.92\)

\(86.31\pm 3.50\)

\({\varvec {89.31}}\pm {\varvec {2.08}}\)

12

\(53.61\pm 3.98\)

\(77.27\pm 7.68\)

\(77.85\pm 10.99\)

\(73.51\pm 1.32\)

\(85.68\pm 3.26\)

\(79.92\pm 1.89\)

\({\varvec {86.17}}\pm {\varvec {1.99}}\)

\(82.91\pm 1.61\)

\(84.06\pm 4.93\)

13

\(27.11\pm 12.51\)

\(76.47\pm 6.51\)

\(78.15\pm 6.35\)

\(66.81\pm 3.71\)

\(89.00\pm 3.93\)

\(80.42\pm 1.31\)

\(94.28\pm 2.80\)

\({\varvec {93.25}}\pm {\varvec {4.76}}\)

\(91.43\pm 1.83\)

14

\(91.50\pm 3.90\)

\(99.01\pm 0.94\)

\(94.71\pm 4.33\)

\({\varvec {99.91}}\pm {\varvec {0.19}}\)

\(95.30\pm 3.80\)

\(83.79\pm 6.23\)

\(94.35\pm 0.91\)

\(96.40\pm 4.03\)

\(99.26\pm 0.75\)

15

\(99.22\pm 0.36\)

\(64.29\pm 14.79\)

\(95.34\pm 3.03\)

\({\varvec {100.0}}\pm {\varvec {0.00}}\)

\(95.39\pm 1.05\)

\(93.51\pm 3.44\)

\(99.70\pm 0.59\)

\(91.35\pm 1.32\)

\(99.48\pm 0.44\)

OA (%)

\(76.59\pm 0.53\)

\(71.71\pm 1.04\)

\(84.76\pm 1.36\)

\(88.60\pm 0.50\)

\(89.95\pm 0.61\)

\(84.44\pm 1.56\)

\(90.87\pm 0.69\)

\(89.54\pm 0.71\)

\({\varvec {92.28}}\pm {\varvec {0.68}}\)

AA (%)

\(77.86\pm 0.65\)

\(74.16\pm 0.66\)

\(84.14\pm 1.20\)

\(88.88\pm 0.54\)

\(92.04\pm 0.47\)

\(84.90\pm 1.79\)

\(92.37\pm 0.52\)

\(90.22\pm 0.79\)

\({\varvec {93.43}}\pm {\varvec {0.46}}\)

\(\kappa\) (%)

\(74.66\pm 0.57\)

\(69.41\pm 1.12\)

\(83.51\pm 1.47\)

\(87.68\pm 0.54\)

\(90.71\pm 0.56\)

\(83.16\pm 1.69\)

\(90.13\pm 0.75\)

\(90.33\pm 0.65\)

\({\varvec {91.65}}\pm {\varvec {0.74}}\)