Table 6 Comparison of prediction model results with/without parallel mechanism under three timeframe partition methods.

From: Community evolution prediction based on feature change patterns in social networks

Data

Timeframe

Disjoint

Overlapping

SATPM

size:1

offset:1

size:2

offset:1

/

parallel mechanism

without

with

without

with

without

with

AS

\(\overline{Acc}\)

0.916

0.928

0.923

0.922

0.913

0.913

Macro avg

0.259

0.605

0.316

0.477

0.423

0.439

Weighted avg

0.889

0.920

0.908

0.896

0.893

0.894

AS-Caida

\(\overline{Acc}\)

0.926

0.903

0.900

0.924

0.965

0.978

Macro avg

0.885

0.834

0.879

0.884

0.891

0.937

Weighted avg

0.925

0.902

0.898

0.920

0.967

0.980

DBLP

\(\overline{Acc}\)

0.908

0.790

0.884

0.896

0.986

0.994

Macro avg

0.801

0.593

0.870

0.887

0.983

0.996

Weighted avg

0.902

0.767

0.885

0.895

0.986

0.994

Facebook

\(\overline{Acc}\)

0.802

0.681

0.934

0.946

0.768

0.850

Macro avg

0.756

0.694

0.904

0.909

0.590

0.767

Weighted avg

0.802

0.707

0.930

0.951

0.737

0.829

Sx-askubuntu-c2q

\(\overline{Acc}\)

0.945

0.906

0.969

0.981

0.975

0.987

Macro avg

0.930

0.841

0.907

0.964

0.922

0.951

Weighted avg

0.945

0.904

0.962

0.980

0.972

0.989