Table 11 Evaluation of Metrics for Different Models using the COGN-26 data set. The best result for each metric is reported in bold.
Model | ACC | Loss | F1 | Precision | Recall | Avg. fold time (s) |
|---|---|---|---|---|---|---|
EEGNet | 0.7646 | 0.5423 | 0.7538 | 0.7998 | 0.7764 | 60.03 |
LSTM | 0.6833 | 3.5559 | 0.7166 | 0.6824 | 0.8333 | 219.89 |
1D-CNN | 0.8094 | 0.5223 | 0.7806 | 0.8970 | 0.7396 | 98.68 |
1D-CNN-LSTM | 0.7556 | 0.8383 | 0.7445 | 0.8056 | 0.7807 | 113.25 |