Table 3 Comparative study of CNN, transformer, and S-transform contributions to model performance (MIT-BIH and Icentia 11k).

From: A novel hybrid CNN-transformer model for arrhythmia detection without R-peak identification using stockwell transform

Model

CNN

1D Transformer

2D CNN

2D Transformer

2D hybrid model

MIT-BIH

Icentia 11k

MIT-BIH

Icentia 11k

MIT-BIH

Icentia 11k

MIT-BIH

Icentia 11k

MIT-BIH

Icentia 11k

Overall Acc (%)

31.73

47.33

67.26

57.23

99.41

96.19

80.81

60.81

99.58

97.80

N

 F1

0.3289

0.3519

0.6696

0.5962

0.9881

0.9638

0.6782

0.5814

0.9896

0.9792

 Se

0.4065

0.3417

0.6884

0.6924

0.9852

0.9749

0.6379

0.6333

0.9881

0.9913

 PPV

0.2762

0.3628

0.6516

0.5235

0.9910

0.9530

0.7239

0.5374

0.9910

0.9674

S

 F1

0.0220

0.5736

0.6400

0.6615

0.9956

0.9758

0.7334

0.7906

0.9970

0.9707

 Se

0.0119

0.4591

0.6190

0.5932

1.0000

0.9699

0.7410

0.7926

0.9970

0.9593

 PPV

0.1428

0.7703

0.6624

0.7475

0.9912

0.9817

0.7259

0.7886

0.9970

0.9823

V

 F1

0.1203

0.5391

0.4250

0.6657

0.9896

0.9610

0.7001

0.6628

0.9926

0.9857

 Se

0.0801

0.5936

0.3026

0.6877

0.9881

0.9610

0.7032

0.6777

0.9941

0.9880

 PPV

0.2410

0.4938

0.7132

0.6451

0.9910

0.9610

0.6970

0.6485

0.9911

0.9834

Q

 F1

0.4360

0.4429

0.6849

0.3473

0.9970

0.9471

0.9255

0.3710

1.0000

0.9763

 Se

0.6261

0.5010

0.8189

0.3156

0.9970

0.9419

0.9584

0.3287

1.0000

0.9733

 PPV

0.3343

0.3968

0.5884

0.3860

0.9970

0.9524

0.8947

0.4260

1.0000

0.9792

F

 F1

0.4122

–

0.8521

–

1.0000

–

0.9912

–

1.0000

–

 Se

0.4613

–

0.9345

–

1.0000

–

1.0000

–

1.0000

–

 PPV

0.3725

–

0.7830

–

1.0000

–

0.9824

–

1.0000

–

Kappa

0.1465

0.2978

0.5908

0.4297

0.9926

0.9492

0.7601

0.4774

0.9948

0.9707

MCC

0.1559

0.3013

0.5988

0.4330

0.9926

0.9493

0.7605

0.4791

0.9948

0.9707