Table 3 Pest classification testing results.
From: Deep learning based agricultural pest monitoring and classification
Class ID | Accuracy (Before augmentation) | Precision (Before augmentation) | Recall (Before augmentation) | Accuracy (After augmentation) | Precision (After augmentation) | Recall (After augmentation) |
|---|---|---|---|---|---|---|
1 | 0.68 | 0.75 | 0.6 | 0.85 | 0.9 | 0.8 |
2 | 0.55 | 0.62 | 0.5 | 0.83 | 0.85 | 0.82 |
3 | 0.57 | 0.86 | 0.4 | 0.84 | 0.92 | 0.75 |
4 | 0.55 | 0.54 | 0.56 | 0.82 | 0.8 | 0.78 |
5 | 0.63 | 0.66 | 0.6 | 0.85 | 0.88 | 0.82 |
6 | 0.71 | 0.74 | 0.68 | 0.87 | 0.9 | 0.85 |
7 | 0.56 | 0.52 | 0.63 | 0.84 | 0.87 | 0.79 |
8 | 0.52 | 0.46 | 0.58 | 0.83 | 0.85 | 0.8 |
9 | 0.56 | 0.67 | 0.48 | 0.85 | 0.88 | 0.83 |
10 | 0.47 | 0.51 | 0.44 | 0.82 | 0.83 | 0.8 |
11 | 0.7 | 0.68 | 0.73 | 0.86 | 0.89 | 0.82 |
12 | 0.6 | 0.65 | 0.56 | 0.85 | 0.88 | 0.82 |
13 | 0.61 | 0.55 | 0.68 | 0.84 | 0.87 | 0.81 |
14 | 0.64 | 0.68 | 0.6 | 0.85 | 0.88 | 0.82 |
16 | 0.58 | 0.5 | 0.68 | 0.84 | 0.86 | 0.79 |
17 | 0.51 | 0.4 | 0.68 | 0.83 | 0.85 | 0.78 |
18 | 0.75 | 0.79 | 0.71 | 0.88 | 0.9 | 0.84 |
19 | 0.52 | 0.52 | 0.53 | 0.83 | 0.85 | 0.78 |
20 | 0.39 | 0.25 | 0.68 | 0.82 | 0.84 | 0.77 |
21 | 0.54 | 0.44 | 0.68 | 0.83 | 0.85 | 0.78 |
22 | 0.56 | 0.52 | 0.6 | 0.84 | 0.87 | 0.79 |
23 | 0.63 | 0.66 | 0.6 | 0.85 | 0.88 | 0.82 |
24 | 0.61 | 0.62 | 0.59 | 0.84 | 0.87 | 0.81 |
25 | 0.38 | 0.52 | 0.3 | 0.82 | 0.85 | 0.77 |
26 | 0.68 | 0.63 | 0.74 | 0.86 | 0.88 | 0.82 |
27 | 0.77 | 0.71 | 0.83 | 0.88 | 0.9 | 0.84 |
28 | 0.36 | 0.3 | 0.46 | 0.82 | 0.84 | 0.77 |
29 | 0.47 | 0.47 | 0.47 | 0.83 | 0.85 | 0.78 |
30 | 0.43 | 0.45 | 0.41 | 0.84 | 0.86 | 0.79 |
31 | 0.76 | 0.76 | 0.76 | 0.88 | 0.9 | 0.84 |
32 | 0.64 | 0.67 | 0.61 | 0.85 | 0.88 | 0.82 |
33 | 0.52 | 0.5 | 0.54 | 0.83 | 0.85 | 0.8 |
34 | 0.61 | 0.79 | 0.52 | 0.85 | 0.89 | 0.81 |
35 | 0.73 | 0.73 | 0.73 | 0.86 | 0.88 | 0.84 |
36 | 0.65 | 0.85 | 0.54 | 0.85 | 0.91 | 0.78 |
37 | 0.58 | 0.5 | 0.66 | 0.84 | 0.86 | 0.8 |
38 | 0.64 | 0.69 | 0.6 | 0.85 | 0.89 | 0.82 |
39 | 0.5 | 0.4 | 0.66 | 0.83 | 0.85 | 0.8 |
40 | 0.41 | 0.35 | 0.48 | 0.82 | 0.83 | 0.79 |
41 | 0.67 | 0.7 | 0.65 | 0.85 | 0.89 | 0.82 |
42 | 0.7 | 0.68 | 0.72 | 0.85 | 0.88 | 0.83 |
43 | 0.54 | 0.74 | 0.42 | 0.83 | 0.85 | 0.78 |
44 | 0.76 | 0.76 | 0.76 | 0.87 | 0.9 | 0.85 |
45 | 0.64 | 0.66 | 0.61 | 0.84 | 0.87 | 0.81 |
46 | 0.4 | 0.37 | 0.44 | 0.82 | 0.83 | 0.78 |
47 | 0.53 | 0.64 | 0.45 | 0.83 | 0.85 | 0.79 |
48 | 0.42 | 0.47 | 0.38 | 0.81 | 0.83 | 0.77 |
49 | 0.45 | 0.43 | 0.48 | 0.82 | 0.83 | 0.79 |
50 | 0.51 | 0.53 | 0.49 | 0.82 | 0.85 | 0.8 |
51 | 0.66 | 0.62 | 0.7 | 0.85 | 0.88 | 0.82 |
52 | 0.38 | 0.36 | 0.4 | 0.81 | 0.83 | 0.78 |
53 | 0.58 | 0.72 | 0.47 | 0.84 | 0.87 | 0.8 |
54 | 0.7 | 0.75 | 0.67 | 0.86 | 0.89 | 0.83 |
55 | 0.3 | 0.29 | 0.32 | 0.8 | 0.82 | 0.76 |
56 | 0.6 | 0.71 | 0.52 | 0.85 | 0.88 | 0.82 |
57 | 0.56 | 0.75 | 0.44 | 0.84 | 0.87 | 0.8 |
58 | 0.65 | 0.65 | 0.65 | 0.85 | 0.88 | 0.82 |
59 | 0.71 | 0.71 | 0.71 | 0.87 | 0.9 | 0.85 |
60 | 0.73 | 0.86 | 0.62 | 0.86 | 0.89 | 0.83 |
62 | 0.7 | 0.68 | 0.72 | 0.85 | 0.82 | 0.87 |
63 | 0.75 | 0.75 | 0.75 | 0.86 | 0.86 | 0.86 |
66 | 0.81 | 0.81 | 0.81 | 0.89 | 0.88 | 0.9 |
67 | 0.86 | 0.84 | 0.89 | 0.9 | 0.88 | 0.92 |
68 | 0.75 | 0.64 | 0.9 | 0.86 | 0.75 | 0.93 |
69 | 0.65 | 0.59 | 0.73 | 0.8 | 0.75 | 0.85 |
70 | 0.64 | 0.55 | 0.78 | 0.79 | 0.73 | 0.86 |
71 | 0.79 | 0.8 | 0.78 | 0.88 | 0.87 | 0.89 |
82 | 0.42 | 0.47 | 0.38 | 0.65 | 0.6 | 0.7 |
83 | 0.9 | 0.87 | 0.94 | 0.92 | 0.91 | 0.93 |
84 | 0.91 | 0.97 | 0.85 | 0.94 | 0.98 | 0.88 |
85 | 0.74 | 0.9 | 0.63 | 0.85 | 0.91 | 0.78 |
86 | 0.91 | 1 | 0.83 | 0.93 | 0.99 | 0.85 |
87 | 0.71 | 0.7 | 0.73 | 0.84 | 0.83 | 0.86 |
90 | 0.91 | 0.96 | 0.86 | 0.94 | 0.97 | 0.89 |
91 | 0.87 | 0.92 | 0.83 | 0.91 | 0.94 | 0.88 |
93 | 0.98 | 1 | 0.97 | 0.99 | 1 | 0.98 |
94 | 0.83 | 0.97 | 0.73 | 0.87 | 0.96 | 0.78 |
97 | 0.93 | 0.96 | 0.9 | 0.96 | 0.98 | 0.93 |
98 | 0.86 | 0.92 | 0.8 | 0.89 | 0.94 | 0.83 |
100 | 0.78 | 0.85 | 0.72 | 0.82 | 0.9 | 0.76 |
101 | 0.71 | 0.73 | 0.69 | 0.8 | 0.79 | 0.81 |