Table 1 Experimental results on the NEU-MGD multi-objects data set.

From: Robot multi-target high performance grasping detection based on random sub-path fusion

Network name

ACC (%)

LOSS

Fps

RSPFG-Net

96.39

0.0175

45

SqueezeNet

74.32

0.025

14

Faster-RCNN

85.6

0.035

11

CascadeR-CNN

91.5

0.024

22

GG-CNN

73

0.0272

19

AlexNet

88

0.026

13

FCGN

97.7

0.0226

9

ResNet-50x2

89.2

0.0275

10