Table 2 Potential features selected using Meta-Heuristics and XAI feature selection methods.

From: Optimized hybrid machine learning framework for early diabetes prediction using electrogastrograms

Total Features

Features selected using meta-heuristics techniques

Features selected using

XAI technique

Genetic Algorithm

(GA)

Ant Colony Optimization

(ACO)

Simulated annealing

(SA)

Variance

Y

Y

Y

Y

Root Mean Square

Y

N

N

N

Mean absolute value

N

N

N

N

Waveform length

N

Y

Y

N

Skewness

Y

Y

N

Y

Maximum fractal length

Y

Y

N

Y

Teager Kaiser energy

N

Y

Y

Y

R(a) = 0.2

Y

N

Y

Y

R(a) = 0.4

Y

N

N

N

R(a) = 0.6

N

N

N

N

R(a) = 0.8

Y

N

N

N

R(a) = 0.9

N

Y

N

N

T(a) = 0.2

Y

N

N

N

T(a) = 0.4

Y

N

Y

Y

T(a) = 0.6

Y

N

Y

Y

T(a) = 0.8

Y

N

Y

Y

T(a) = 0.9

Y

N

Y

Y

Spectral Entropy

N

Y

Y

Y

Mean Frequency

Y

Y

Y

Y

Median Frequency

Y

Y

Y

Y