Table 4 Comparison of adversarial texts’ perturbation rate. The minimum value in each row is emphasized in bold.

From: Hard label adversarial attack with high query efficiency against NLP models

Data

Model

Attack

TextFooler

GA-A

PSO-A

LSHA

HLBB

TextHoaxer

LeapAttack

SSPAttack

QEAttack

AG

BERT

21.65

16.45

15.56

20.32

13.15

15.72

18.37

12.22

12.43

WordCNN

13.22

14.91

12.44

14.43

10.97

12.97

14.81

9.96

9.91

WordLSTM

18.96

16.11

15.55

20.79

13.54

16.24

18.28

12.62

12.49

MR

BERT

15.25

16.18

11.27

14.44

13.86

12.31

16.58

12.61

13.45

WordCNN

13.75

15.86

11.77

14.40

13.74

12.49

15.44

12.86

12.95

WordLSTM

13.95

17.23

11.57

15.02

14.28

12.59

16.09

13.07

13.52

Yelp

BERT

9.07

11.09

7.77

8.63

7.65

9.77

11.02

7.49

6.97

WordCNN

6.81

11.63

7.55

6.96

7.20

8.90

9.58

6.81

6.58

WordLSTM

7.18

10.72

7.53

7.79

6.71

8.32

9.01

6.37

6.22

Yahoo

BERT

8.81

8.55

6.25

7.62

6.52

7.30

8.63

6.23

6.10

WordCNN

8.60

9.15

6.96

7.91

7.20

8.22

9.17

6.76

6.44

WordLSTM

10.51

9.51

7.70

9.86

7.59

8.83

10.20

7.31

6.92

IMDB

BERT

3.50

6.32

4.44

3.44

3.88

5.40

5.77

3.79

3.23

WordCNN

3.00

6.86

4.36

2.89

3.59

4.72

4.59

3.33

2.84

WordLSTM

2.96

6.33

4.18

3.39

3.52

4.46

4.59

3.31

2.77

Average

10.48

11.79

8.99

10.53

8.89

9.88

11.48

8.32

8.19