Table 6 Comparison of adversarial texts’ grammar error count. In each row, the minimum value for soft-label attacks is marked by underlining, and the minimum value for hard-label attacks is emphasized in bold.
From: Hard label adversarial attack with high query efficiency against NLP models
Data | Model | Attack | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
TextFooler | GA-A | PSO-A | LSHA | HLBB | TextHoaxer | LeapAttack | SSPAttack | QEAttack | ||
AG | BERT | 0.28 | 0.42 | 0.17 | 0.09 | 0.39 | 0.37 | 0.50 | 0.29 | 0.35 |
WordCNN | 0.35 | 0.51 | 0.19 | -0.19 | 0.51 | 0.43 | 0.51 | 0.41 | 0.40 | |
WordLSTM | 0.46 | 0.48 | 0.21 | -0.23 | 0.50 | 0.39 | 0.46 | 0.38 | 0.37 | |
MR | BERT | 0.15 | 0.22 | 0.04 | 0.16 | 0.26 | 0.22 | 0.31 | 0.24 | 0.23 |
WordCNN | 0.16 | 0.22 | 0.06 | 0.19 | 0.31 | 0.27 | 0.28 | 0.26 | 0.25 | |
WordLSTM | 0.13 | 0.24 | 0.03 | 0.15 | 0.29 | 0.19 | 0.28 | 0.21 | 0.18 | |
Yelp | BERT | 0.48 | 0.77 | 0.13 | 0.38 | 0.75 | 1.21 | 1.48 | 0.97 | 0.94 |
WordCNN | 0.61 | 0.78 | 0.45 | 0.40 | 0.97 | 0.91 | 1.28 | 0.90 | 0.85 | |
WordLSTM | 0.74 | 0.72 | 0.35 | 0.39 | 0.89 | 1.06 | 1.21 | 0.78 | 0.83 | |
Yahoo | BERT | 0.34 | 0.37 | 0.08 | 0.17 | 0.71 | 0.72 | 0.87 | 0.79 | 0.58 |
WordCNN | 0.50 | 0.45 | 0.24 | 0.01 | 0.77 | 0.83 | 1.06 | 0.74 | 0.68 | |
WordLSTM | 0.74 | 0.45 | 0.20 | 0.06 | 0.85 | 0.99 | 1.14 | 0.84 | 0.78 | |
IMDB | BERT | 0.00 | 0.78 | 0.16 | 0.34 | 0.95 | 0.99 | 1.48 | 0.76 | 0.86 |
WordCNN | 0.41 | 0.79 | 0.70 | 0.41 | 0.88 | 0.91 | 1.19 | 0.87 | 0.83 | |
WordLSTM | 0.32 | 0.63 | 0.25 | 0.27 | 0.84 | 0.77 | 1.08 | 0.64 | 0.59 | |
Average | 0.38 | 0.52 | 0.22 | 0.17 | 0.66 | 0.68 | 0.88 | 0.61 | 0.58 | |