Table 1 Example of encoding schemes for 1 bit error.

From: Self-checking principle and design of ternary Berger code

No

Original word B

B' with one bit error

x → y

1

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

01 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

m8 = 1 →  0

2

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

\(\overline{1}\) 1 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

m8 = 1 →  \(\overline{1}\)

3

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11000 \(\overline{1}\) 10 0011 0011 0010

m6 = \(\overline{1}\) → 0

4

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11100 \(\overline{1}\) 10 0011 0011 0010

m6 =  \(\overline{1}\) → 1

5

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11 \(\overline{1}\) 10 \(\overline{1}\) 10 0011 0011 0010

m5 = 0 → 1

6

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11 \(\overline{1}\) \(\overline{1}\) \(\overline{1}\) 10 0011 0011 0010

m5 = 0 →  \(\overline{1}\)

7

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11 \(\overline{1}\) 00 \(\overline{1}\) 10 1011 0011 0010

w4 = 0 → 1

8

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11 \(\overline{1}\) 00 \(\overline{1}\) 10 \(\overline{1}\) 011 0011 0010

w4 = 0 →  \(\overline{1}\)

9

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0001 0011 0010

w2 = 1 → 0

10

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11 \(\overline{1}\) 00 \(\overline{1}\) 10 00 \(\overline{1}\) 1 0011 0010

w2 = 1 →  \(\overline{1}\)

11

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 1011 0010

v4 = 0 → 1

12

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0010 0010

v1 = 1 → 0

13

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0000

h2 = 1 → 0

14

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010

11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 001 \(\overline{1}\)

h1 = 0 → \(\overline{1}\)