Table 1 Example of encoding schemes for 1 bit error.
From: Self-checking principle and design of ternary Berger code
No | Original word B | B' with one bit error | x → y |
|---|---|---|---|
1 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 01 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | m8 = 1 → 0 |
2 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | \(\overline{1}\) 1 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | m8 = 1 → \(\overline{1}\) |
3 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11000 \(\overline{1}\) 10 0011 0011 0010 | m6 = \(\overline{1}\) → 0 |
4 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11100 \(\overline{1}\) 10 0011 0011 0010 | m6 = \(\overline{1}\) → 1 |
5 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11 \(\overline{1}\) 10 \(\overline{1}\) 10 0011 0011 0010 | m5 = 0 → 1 |
6 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11 \(\overline{1}\) \(\overline{1}\) \(\overline{1}\) 10 0011 0011 0010 | m5 = 0 → \(\overline{1}\) |
7 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 1011 0011 0010 | w4 = 0 → 1 |
8 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 \(\overline{1}\) 011 0011 0010 | w4 = 0 → \(\overline{1}\) |
9 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0001 0011 0010 | w2 = 1 → 0 |
10 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 00 \(\overline{1}\) 1 0011 0010 | w2 = 1 → \(\overline{1}\) |
11 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 1011 0010 | v4 = 0 → 1 |
12 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0010 0010 | v1 = 1 → 0 |
13 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0000 | h2 = 1 → 0 |
14 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 0010 | 11 \(\overline{1}\) 00 \(\overline{1}\) 10 0011 0011 001 \(\overline{1}\) | h1 = 0 → \(\overline{1}\) |