Table 2 Comparison of the AUCs, accuracies, sensitivities, specificities and BrierScores of the top three individual classifiers in both cross-validation and independent testing.

From: A stacking ensemble machine learning model for predicting postoperative axial pain intensity in patients with degenerative cervical myelopathy

Model

AUC

Accuracy (%)

Sensitivity (%)

Specificity (%)

Brier score

Cross-validation

 EmbeddingLR-RF

0.82

79.59

0.82

0.77

0.18

 EmbeddingRF-MLP

0.83

82.69

0.83

0.83

0.18

 RFE-SVM

0.82

78.42

0.77

0.8

0.18

Independent testing

 EmbeddingLR-RF

0.81

79.97

0.77

0.83

0.18

 EmbeddingRF-MLP

0.81

80.49

0.80

0.81

0.18

 RFE-SVM

0.80

76.10

0.78

0.74

0.19

  1. EmbeddingLR embedding logistic regressor, RF random forest, EmbeddingRF embedding random forest, MLP multilayer perceptron, RFE recursive feature elimination, SVM supported vector machine.