Table 2 Hyperparameter values used by the PSO-GRUGAN-IDS model for traffic abnormality detection.

From: High-speed threat detection in 5G SDN with particle swarm optimizer integrated GRU-driven generative adversarial network

Parameters

Value

 PSO optimizer

 Number of particles

10

 Convergence threshold

0.5

 Inertia weight

0.5

 Cognitive weight

0.8

 Social weight

0.8

 Global best fitness value

Dynamic (converges during optimization)

 Iteration count

Dynamic (depends on convergence)

GAN model

 GR layers

GRU layer (128 units)

Dense (512 units, relu)

Dense (256 units, relu)

Dense (128 units, relu)

Dense(output_dim, sigmoid)

 GR optimizer

Adam

 learning_rate

0.0005

 beta_1

0.5

 DR layers

GRU (128 units)

Dense (256 units, relu)

Dense (128 units, relu)

Dense (64 units, relu)

Dense (1 unit, sigmoid)

DR optimizer

Adam

 learning_rate

0.0002

 beta_1

0.5

 Discriminator loss function

Binary cross-entropy

 Combined model loss function

Binary cross-entropy

 GAN training epochs

25

 GAN batch size

32

IDS model

 Model layers

GRU(128 units)

Dense(64 units, relu)

Dense(1 unit, sigmoid)

 Optimizer

Adam

 learning_rate

0.0005

 beta_1

0.5

 The loss function

Binary cross-entropy

 Epochs

25

 Batch size

32