Table 5 Secret security keys and their difference rates for various images.
From: An image encryption scheme using 4-D chaotic system and cellular automaton
Keys | Lena | Baboon | Peppers | Tree | House | Beans | F16 | Girl |
|---|---|---|---|---|---|---|---|---|
\(K_{e_{1}}\) \((x_0' = x_0 + 10^{-13})\) | 99.6002 | 99.6030 | 99.6131 | 99.6190 | 99.6350 | 99.6161 | 99.6010 | 99.5771 |
\(K_{e_{2}}\) \((y_0' = y_0 + 10^{-14})\) | 99.6291 | 99.6111 | 99.6092 | 99.6072 | 99.6065 | 99.5951 | 99.6121 | 99.6022 |
\(K_{e_{3}}\) \((z_0' = z_0 + 10^{-13})\) | 99.5842 | 99.5942 | 99.5741 | 99.5881 | 99.6220 | 99.6082 | 99.6081 | 99.6351 |
\(K_{e_{4}}\) \((w_0' = w_0 + 10^{-14})\) | 99.5963 | 99.6081 | 99.6190 | 99.6073 | 99.5964 | 99.6292 | 99.6082 | 99.5833 |
\(K_{e_{5}}\) \((x_0' = x_0 - 10^{-13})\) | 99.6071 | 99.6191 | 99.6191 | 99.6021 | 99.5936 | 99.6124 | 99.6154 | 99.5985 |
\(K_{e_{6}}\) \((y_0' = y_0 - 10^{-14})\) | 99.6072 | 99.6160 | 99.5972 | 99.5962 | 99.6030 | 99.6054 | 99.6167 | 99.6037 |
\(K_{e_{7}}\) \((z_0' = z_0 - 10^{-13})\) | 99.6141 | 99.6110 | 99.6061 | 99.6151 | 99.6041 | 99.5921 | 99.6080 | 99.6139 |
\(K_{e_{8}}\) \((w_0' = w_0 - 10^{-14})\) | 99.6431 | 99.5990 | 99.6218 | 99.6129 | 99.6022 | 99.6114 | 99.6761 | 99.6174 |
Average | 99.6102 | 99.6077 | 99.6075 | 99.6054 | 99.6078 | 99.6099 | 99.6182 | 99.6039 |