Table 3 Statistical significance analysis of the proposed method (SGA + RF) compared to baseline models.

From: SGA-Driven feature selection and random forest classification for enhanced breast cancer diagnosis: A comparative study

Feature Subset Size

Proposed Method (SGA + RF) Accuracy (%)

Baseline Model (SVM) Accuracy (%)

Baseline Model (KNN) Accuracy (%)

Baseline Model (LR) Accuracy (%)

Paired t-test (p-value)

Statistical Significance (p < 0.05)

8

93.67

88.45

87.12

85.79

0.032

Significant

12

97.71

91.29

90.65

89.98

0.018

Significant

16

98.54

92.84

91.45

90.23

0.022

Significant

22

99.01

93.17

92.41

91.56

0.015

Significant

26

96.32

91.75

90.98

89.12

0.027

Significant

30

95.19

90.33

89.77

88.66

0.031

Significant

34

96.69

91.08

90.22

88.98

0.029

Significant