Table 3 Findings of the comparative analysis between the PBNN and other techniques.

From: Parallel boosting neural network with mutual information for day-ahead solar irradiance forecasting

Location

Model

RMSE

MAE

MSE

MAPE

NRMSE

RMSRE

MARE

RMSPE

(\((W~m^{-2})\))

(\((W~m^{-2})\))

(\((W~m^{-2})^2\))

(\((\%)\))

(\((\%)\))

(\((\%)\))

Islamabad

CatBoost

30.67

21.47

940.69

0.68

0.64

0.014

0.0068

1.41

XgBoost

22.98

13.17

528.37

0.54

0.48

0.015

0.0054

1.55

RF

16.13

9.61

260.13

0.31

0.34

0.008

0.003

0.81

LSTM

38.57

28.59

1487.91

1.04

0.79

0.025

0.01

2.54

GRU

55.21

47.04

3048.05

1.42

1.15

0.022

0.014

2.18

PBNN

14.06

8.36

197.77

0.26

0.29

0.006

0.002

0.56

San Diego

CatBoost

38.68

29.69

1496.52

0.63

0.74

0.008

0.006

0.86

XgBoost

19.19

10.51

368.22

0.23

0.37

0.004

0.002

0.48

RF

26.26

11

689.45

0.24

0.5

0.006

0.002

0.65

LSTM

75.38

47.41

5682.16

0.99

1.45

0.015

0.009

1.56

GRU

78.98

50.78

6239.16

1.08

1.51

0.017

0.011

1.73

PBNN

17.23

5.26

296.84

0.12

0.32

0.004

0.001

0.48