Table 5 Forecasting performances of the networks trained with all features.

From: Parallel boosting neural network with mutual information for day-ahead solar irradiance forecasting

Location

Model

RMSE

MAE

MSE

MAPE

NRMSE

Islamabad

CatBoost

30.2

22.19

912.3

0.72

0.63

XgBoost

52.69

37.42

2776.4

1.13

0.49

RF

26.53

18.5

703.86

0.56

0.55

LSTM

93.44

16.99

8731.81

3.95

1.94

GRU

80.99

53.74

6560.94

1.96

1.68

PBNN

25.18

17.39

633.96

0.49

0.52

San Diego

CatBoost

43.98

31.68

1934.79

0.69

0.84

XgBoost

49.31

34.48

2432.18

0.69

0.94

RF

31.71

53.86

2900.91

0.64

1.03

LSTM

21977.2

148.25

115.41

2.39

2.88

GRU

113.81

65.18

1.34

1.08

2.18

PBNN

36.74

21.86

1349.92

0.46

0.7